Numerical Ross Recovery for Diffusion Processes Using a PDE Approach

Q3 Mathematics
L. von Sydow, J. Waldén
{"title":"Numerical Ross Recovery for Diffusion Processes Using a PDE Approach","authors":"L. von Sydow, J. Waldén","doi":"10.1080/1350486X.2020.1730202","DOIUrl":null,"url":null,"abstract":"ABSTRACT We develop and analyse a numerical method for solving the Ross recovery problem for a diffusion problem with unbounded support, with a transition independent pricing kernel. Asset prices are assumed to only be available on a bounded subinterval . Theoretical error bounds on the recovered pricing kernel are derived, relating the convergence rate as a function of to the rate of mean reversion of the diffusion process. Our suggested numerical method for finding the pricing kernel employs finite differences, and we apply Sturm–Liouville theory to make use of inverse iteration on the resulting discretized eigenvalue problem. We numerically verify the derived error bounds on a test bench of three model problems.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"21 1","pages":"46 - 66"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2020.1730202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT We develop and analyse a numerical method for solving the Ross recovery problem for a diffusion problem with unbounded support, with a transition independent pricing kernel. Asset prices are assumed to only be available on a bounded subinterval . Theoretical error bounds on the recovered pricing kernel are derived, relating the convergence rate as a function of to the rate of mean reversion of the diffusion process. Our suggested numerical method for finding the pricing kernel employs finite differences, and we apply Sturm–Liouville theory to make use of inverse iteration on the resulting discretized eigenvalue problem. We numerically verify the derived error bounds on a test bench of three model problems.
采用PDE方法的扩散过程数值Ross恢复
本文提出并分析了一种求解具有过渡无关定价核的无界支持扩散问题的Ross恢复问题的数值方法。假设资产价格只在有界的子区间内可用。推导了恢复定价核的理论误差界,将收敛速率作为扩散过程均值回归速率的函数。我们提出的寻找定价核的数值方法采用有限差分,并应用Sturm-Liouville理论对得到的离散特征值问题进行逆迭代。在三个模型问题的实验台上,数值验证了所导出的误差边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信