T. Tokuyama
{"title":"Recent progress on geometric algorithms for approximating functions: Toward applications to data analysis","authors":"T. Tokuyama","doi":"10.1002/ECJC.20297","DOIUrl":null,"url":null,"abstract":"Data simplification is an extremely important issue in our current information-oriented society. Normally, a real-world database contains a massive amount of raw data, and when we consider the data as a distribution function, it has fluctuations due to sampling errors, outliers, and/or invalid inputs. Therefore, for data analysis technology such as data mining, it is important to approximate the input data by a simplified function. There are various approaches to function approximation, and functional analytical methods and learning-based techniques are quite popular. Apart from them, computational geometric approach based on optimization using discrete algorithms is widely studied. However, the conventional application of computational geometrical techniques is pattern matching, and to apply them to data analysis, their formulation and optimization criteria must be changed accordingly. Therefore, various difficulties and computational barriers arise, which must be eliminated or avoided. In this paper, we discuss data approximation in computational geometry and describe current trends centered on the author's latest research. © 2006 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(3): 1–12, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20297","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"56 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ECJC.20297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
函数近似几何算法的最新进展:在数据分析中的应用
数据简化是当今信息化社会中一个极其重要的问题。通常,现实世界的数据库包含大量的原始数据,当我们将数据视为分布函数时,它会由于采样误差、异常值和/或无效输入而产生波动。因此,对于数据挖掘等数据分析技术,用简化函数近似输入数据是很重要的。函数逼近有多种方法,其中泛函分析方法和基于学习的技术非常流行。除此之外,基于离散算法优化的计算几何方法也得到了广泛的研究。然而,计算几何技术的传统应用是模式匹配,要将其应用于数据分析,必须相应地改变其表述和优化准则。因此,出现了各种困难和计算障碍,必须消除或避免。本文讨论了计算几何中的数据逼近,并以作者的最新研究为中心描述了当前的发展趋势。©2006 Wiley期刊公司电子工程学报,2009,31 (3):1104 - 1104;在线发表于Wiley InterScience (www.interscience.wiley.com)。DOI 10.1002 / ecjc.20297
本文章由计算机程序翻译,如有差异,请以英文原文为准。