{"title":"A Directional Converter of Longitudinal Vibration with One Input and Multiple Outputs","authors":"He Xiping, Zhang Haidao","doi":"10.3813/aaa.919355","DOIUrl":null,"url":null,"abstract":"Traditional power ultrasonic vibration systems can process one object at one time and only have one output. A directional converter of longitudinal vibration with multiple outputs composed of an input rod, a hemispherical vibrator, and three output rods is presented. The frequency equation\n used in the design is derived with free edges at the input and output ends of the converter, as well as the continuity of displacements, forces, and angles of rotation at each component junction. The resonant frequencies of three fabricated converters designed using the proposed method are\n in good agreement with those from the finite element method and also with tested values. With the input end of the converter joined with a piezoelectric transducer with a resonant frequency of 19.8 kHz, the longitudinal vibration modes and displacement amplitudes of the output ends of the\n three converters at their resonant frequencies are tested. The results show that longitudinal vibration can be transferred from the input end to the multi-output ends through the converter. Furthermore, there exists a linear relationship between the excitation voltage and the displacements\n of each output of the converter.","PeriodicalId":35085,"journal":{"name":"Acta Acustica united with Acustica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica united with Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3813/aaa.919355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional power ultrasonic vibration systems can process one object at one time and only have one output. A directional converter of longitudinal vibration with multiple outputs composed of an input rod, a hemispherical vibrator, and three output rods is presented. The frequency equation
used in the design is derived with free edges at the input and output ends of the converter, as well as the continuity of displacements, forces, and angles of rotation at each component junction. The resonant frequencies of three fabricated converters designed using the proposed method are
in good agreement with those from the finite element method and also with tested values. With the input end of the converter joined with a piezoelectric transducer with a resonant frequency of 19.8 kHz, the longitudinal vibration modes and displacement amplitudes of the output ends of the
three converters at their resonant frequencies are tested. The results show that longitudinal vibration can be transferred from the input end to the multi-output ends through the converter. Furthermore, there exists a linear relationship between the excitation voltage and the displacements
of each output of the converter.
期刊介绍:
Cessation. Acta Acustica united with Acustica (Acta Acust united Ac), was published together with the European Acoustics Association (EAA). It was an international, peer-reviewed journal on acoustics. It published original articles on all subjects in the field of acoustics, such as
• General Linear Acoustics, • Nonlinear Acoustics, Macrosonics, • Aeroacoustics, • Atmospheric Sound, • Underwater Sound, • Ultrasonics, • Physical Acoustics, • Structural Acoustics, • Noise Control, • Active Control, • Environmental Noise, • Building Acoustics, • Room Acoustics, • Acoustic Materials and Metamaterials, • Audio Signal Processing and Transducers, • Computational and Numerical Acoustics, • Hearing, Audiology and Psychoacoustics, • Speech,
• Musical Acoustics, • Virtual Acoustics, • Auditory Quality of Systems, • Animal Bioacoustics, • History of Acoustics.