Identifying the structural and kinetic elements in protein large-amplitude conformational motions

IF 2.5 2区 化学 Q3 CHEMISTRY, PHYSICAL
J. Chu, Haw Yang
{"title":"Identifying the structural and kinetic elements in protein large-amplitude conformational motions","authors":"J. Chu, Haw Yang","doi":"10.1080/0144235X.2017.1283885","DOIUrl":null,"url":null,"abstract":"The importance of how a protein reconfigures its structure to achieve its function has long been appreciated; yet, the progress in our fundamental understanding of protein dynamics does not seem to be commensurate with the rapid advances in experimental techniques and ever increasing computational prowess. In this review, we attempt to look at this issue based on quantitative characterisations that go beyond simply determining the kinetics rates or only allowing qualitative statements about conformational states. We summarise the theoretical basis for determining from experimental data the kinetics and the structural elements of protein conformational dynamics. The two kinetics elements include the apparent potential of mean force and the intra-molecular diffusion coefficient along a coordinate defined by the pair of single-molecule Förster-type resonance energy transfer reporters that are chemically attached to the protein. We show that it is now possible to resolve the relative contributions of these two kinetics elements when discussing the physical origin of the protein’s conformation-reconfiguration rate changes due to mutation or interaction with chemical effectors or with other proteins. The structural element refers to the orthogonal conformational modes that give rise to the intrinsic conformational motions of the protein, and could allow a comparative study among proteins from different families. To achieve these, it is essential that experimental data be rigorously analysed and integrated with molecular simulations – which include molecular dynamics simulations, coarse-grained modelling, and enhanced sampling. In turn, the close interplay between computation and experiment through this new direction could accelerate the discovery of predictive models.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2017-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews in Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/0144235X.2017.1283885","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

The importance of how a protein reconfigures its structure to achieve its function has long been appreciated; yet, the progress in our fundamental understanding of protein dynamics does not seem to be commensurate with the rapid advances in experimental techniques and ever increasing computational prowess. In this review, we attempt to look at this issue based on quantitative characterisations that go beyond simply determining the kinetics rates or only allowing qualitative statements about conformational states. We summarise the theoretical basis for determining from experimental data the kinetics and the structural elements of protein conformational dynamics. The two kinetics elements include the apparent potential of mean force and the intra-molecular diffusion coefficient along a coordinate defined by the pair of single-molecule Förster-type resonance energy transfer reporters that are chemically attached to the protein. We show that it is now possible to resolve the relative contributions of these two kinetics elements when discussing the physical origin of the protein’s conformation-reconfiguration rate changes due to mutation or interaction with chemical effectors or with other proteins. The structural element refers to the orthogonal conformational modes that give rise to the intrinsic conformational motions of the protein, and could allow a comparative study among proteins from different families. To achieve these, it is essential that experimental data be rigorously analysed and integrated with molecular simulations – which include molecular dynamics simulations, coarse-grained modelling, and enhanced sampling. In turn, the close interplay between computation and experiment through this new direction could accelerate the discovery of predictive models.
识别蛋白质大振幅构象运动的结构和动力学元素
人们早就认识到蛋白质如何重新配置其结构以实现其功能的重要性;然而,我们对蛋白质动力学的基本理解的进展似乎与实验技术的快速进步和不断增加的计算能力不相称。在这篇综述中,我们试图基于定量特征来看待这个问题,而不仅仅是简单地确定动力学速率或只允许对构象状态进行定性陈述。总结了从实验数据中确定蛋白质构象动力学的动力学和结构要素的理论基础。这两个动力学元素包括平均力的表观势能和分子内扩散系数,沿一个坐标由一对单分子Förster-type共振能量转移报告器定义,它们化学地附着在蛋白质上。我们表明,当讨论由于突变或与化学效应物或与其他蛋白质相互作用而引起的蛋白质构象重配置速率变化的物理起源时,现在有可能解决这两个动力学元素的相对贡献。结构元素是指产生蛋白质固有构象运动的正交构象模式,可以对不同家族的蛋白质进行比较研究。为了实现这些目标,必须严格分析实验数据并将其与分子模拟相结合——包括分子动力学模拟、粗粒度建模和增强采样。反过来,通过这个新方向,计算和实验之间的密切相互作用可以加速预测模型的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
1.60%
发文量
5
审稿时长
1 months
期刊介绍: International Reviews in Physical Chemistry publishes review articles describing frontier research areas in physical chemistry. Internationally renowned scientists describe their own research in the wider context of the field. The articles are of interest not only to specialists but also to those wishing to read general and authoritative accounts of recent developments in physical chemistry, chemical physics and theoretical chemistry. The journal appeals to research workers, lecturers and research students alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信