{"title":"Stochastic Substitute Trees for Real-Time Global Illumination","authors":"W. Tatzgern, B. Mayr, B. Kerbl, M. Steinberger","doi":"10.1145/3384382.3384521","DOIUrl":null,"url":null,"abstract":"With the introduction of hardware-supported ray tracing and deep learning for denoising, computer graphics has made a considerable step toward real-time global illumination. In this work, we present an alternative global illumination method: The stochastic substitute tree (SST), a hierarchical structure inspired by lightcuts with light probability distributions as inner nodes. Our approach distributes virtual point lights (VPLs) in every frame and efficiently constructs the SST over those lights by clustering according to Morton codes. Global illumination is approximated by sampling the SST and considers the BRDF at the hit location as well as the SST nodes’ intensities for importance sampling directly from inner nodes of the tree. To remove the introduced Monte Carlo noise, we use a recurrent autoencoder. In combination with temporal filtering, we deliver real-time global illumination for complex scenes with challenging light distributions.","PeriodicalId":91160,"journal":{"name":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384382.3384521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
With the introduction of hardware-supported ray tracing and deep learning for denoising, computer graphics has made a considerable step toward real-time global illumination. In this work, we present an alternative global illumination method: The stochastic substitute tree (SST), a hierarchical structure inspired by lightcuts with light probability distributions as inner nodes. Our approach distributes virtual point lights (VPLs) in every frame and efficiently constructs the SST over those lights by clustering according to Morton codes. Global illumination is approximated by sampling the SST and considers the BRDF at the hit location as well as the SST nodes’ intensities for importance sampling directly from inner nodes of the tree. To remove the introduced Monte Carlo noise, we use a recurrent autoencoder. In combination with temporal filtering, we deliver real-time global illumination for complex scenes with challenging light distributions.