Heegaard diagrams and optimal Morse flows on non-orientable 3-manifolds of genus 1 and genus $2$

Q3 Mathematics
Christian Hatamian, A. Prishlyak
{"title":"Heegaard diagrams and optimal Morse flows on non-orientable 3-manifolds of genus 1 and genus $2$","authors":"Christian Hatamian, A. Prishlyak","doi":"10.15673/tmgc.v13i3.1779","DOIUrl":null,"url":null,"abstract":"\nThe present paper investigates Heegaard diagrams of non-orientable closed $3$-manifolds, i.e. a non-orienable closed surface together with two sets of meridian disks of both handlebodies. \nIt is found all possible non-orientable genus $2$ Heegaard diagrams of complexity less than $6$. \nTopological properties of Morse flows on closed smooth non-orientable $3$-manifolds are described. \nNormalized Heegaard diagrams are furhter used for classification Morse flows with a minimal number of singular points and singular trajectories \n \n  \n ","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v13i3.1779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

Abstract

The present paper investigates Heegaard diagrams of non-orientable closed $3$-manifolds, i.e. a non-orienable closed surface together with two sets of meridian disks of both handlebodies. It is found all possible non-orientable genus $2$ Heegaard diagrams of complexity less than $6$. Topological properties of Morse flows on closed smooth non-orientable $3$-manifolds are described. Normalized Heegaard diagrams are furhter used for classification Morse flows with a minimal number of singular points and singular trajectories    
属1和属2不可定向3-流形上的heegard图和最优Morse流
本文研究了不可定向封闭$3$流形,即不可定向封闭曲面与两个柄体的子午盘的两组。找到了复杂度小于$6$的所有可能的不可定向的$2$格图。描述了闭光滑非定向$3$流形上的Morse流的拓扑性质。归一化heeggaard图进一步用于分类具有最小数量奇异点和奇异轨迹的莫尔斯流
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信