Mining social media with social theories: a survey

Jiliang Tang, Yi Chang, Huan Liu
{"title":"Mining social media with social theories: a survey","authors":"Jiliang Tang, Yi Chang, Huan Liu","doi":"10.1145/2641190.2641195","DOIUrl":null,"url":null,"abstract":"The increasing popularity of social media encourages more and more users to participate in various online activities and produces data in an unprecedented rate. Social media data is big, linked, noisy, highly unstructured and in- complete, and differs from data in traditional data mining, which cultivates a new research field - social media mining. Social theories from social sciences are helpful to explain social phenomena. The scale and properties of social media data are very different from these of data social sciences use to develop social theories. As a new type of social data, social media data has a fundamental question - can we apply social theories to social media data? Recent advances in computer science provide necessary computational tools and techniques for us to verify social theories on large-scale social media data. Social theories have been applied to mining social media. In this article, we review some key social theories in mining social media, their verification approaches, interesting findings, and state-of-the-art algorithms. We also discuss some future directions in this active area of mining social media with social theories.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"1155 1","pages":"20-29"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2641190.2641195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

Abstract

The increasing popularity of social media encourages more and more users to participate in various online activities and produces data in an unprecedented rate. Social media data is big, linked, noisy, highly unstructured and in- complete, and differs from data in traditional data mining, which cultivates a new research field - social media mining. Social theories from social sciences are helpful to explain social phenomena. The scale and properties of social media data are very different from these of data social sciences use to develop social theories. As a new type of social data, social media data has a fundamental question - can we apply social theories to social media data? Recent advances in computer science provide necessary computational tools and techniques for us to verify social theories on large-scale social media data. Social theories have been applied to mining social media. In this article, we review some key social theories in mining social media, their verification approaches, interesting findings, and state-of-the-art algorithms. We also discuss some future directions in this active area of mining social media with social theories.
用社会理论挖掘社交媒体:一项调查
社交媒体的日益普及促使越来越多的用户参与到各种在线活动中,并以前所未有的速度产生数据。社交媒体数据具有庞大、关联、嘈杂、高度非结构化和不完整的特点,不同于传统数据挖掘中的数据,这就催生了一个新的研究领域——社交媒体挖掘。社会科学的社会理论有助于解释社会现象。社交媒体数据的规模和属性与社会科学用来发展社会理论的数据非常不同。作为一种新型的社交数据,社交媒体数据有一个根本性的问题——我们能否将社会理论应用于社交媒体数据?计算机科学的最新进展为我们在大规模社交媒体数据上验证社会理论提供了必要的计算工具和技术。社会理论已经被应用于挖掘社交媒体。在本文中,我们回顾了挖掘社交媒体的一些关键社会理论,它们的验证方法,有趣的发现和最先进的算法。我们还讨论了用社会理论挖掘社交媒体这一活跃领域的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信