{"title":"Fault Prediction Modelling in Open Source Software Under Imperfect Debugging and Change-Point","authors":"Shozab Khurshid, A. Shrivastava, Javaid Iqbal","doi":"10.4018/IJOSSP.2018040101","DOIUrl":null,"url":null,"abstract":"Instant demand of products and services by technologically active users has increased the demand for open source software (OSS)-based applications. Unfortunately, with the complexity and lack of understanding of OSS-based systems, it becomes difficult for a testing team to remove the faults and the fault removal rate becomes low in comparison to what it should be. This also results in generating new faults during removal. Also, the rate at which the testing team detects/corrects fault need not be same during the entire process of testing due to various reasons viz. change in testing strategy, understanding of code, change in resources, etc. In the existing literature on OSS, authors have developed many models considering the above aspects separately. In this article, all of the above aspects have been combined to develop a general framework for predicting the number of faults in OSS. The comparison of eight models on the basis of their prediction capability on two well-known Open Source Software datasets is created and then ranked using normalized criteria distance approach.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"44 1","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2018040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
Instant demand of products and services by technologically active users has increased the demand for open source software (OSS)-based applications. Unfortunately, with the complexity and lack of understanding of OSS-based systems, it becomes difficult for a testing team to remove the faults and the fault removal rate becomes low in comparison to what it should be. This also results in generating new faults during removal. Also, the rate at which the testing team detects/corrects fault need not be same during the entire process of testing due to various reasons viz. change in testing strategy, understanding of code, change in resources, etc. In the existing literature on OSS, authors have developed many models considering the above aspects separately. In this article, all of the above aspects have been combined to develop a general framework for predicting the number of faults in OSS. The comparison of eight models on the basis of their prediction capability on two well-known Open Source Software datasets is created and then ranked using normalized criteria distance approach.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.