Kang Liu, Haoyu Yang, Yuzhe Ma, Benjamin Tan, Bei Yu, Evangeline F. Y. Young, R. Karri, S. Garg
{"title":"Adversarial Perturbation Attacks on ML-based CAD","authors":"Kang Liu, Haoyu Yang, Yuzhe Ma, Benjamin Tan, Bei Yu, Evangeline F. Y. Young, R. Karri, S. Garg","doi":"10.1145/3408288","DOIUrl":null,"url":null,"abstract":"There is substantial interest in the use of machine learning (ML)-based techniques throughout the electronic computer-aided design (CAD) flow, particularly those based on deep learning. However, while deep learning methods have surpassed state-of-the-art performance in several applications, they have exhibited intrinsic susceptibility to adversarial perturbations—small but deliberate alterations to the input of a neural network, precipitating incorrect predictions. In this article, we seek to investigate whether adversarial perturbations pose risks to ML-based CAD tools, and if so, how these risks can be mitigated. To this end, we use a motivating case study of lithographic hotspot detection, for which convolutional neural networks (CNN) have shown great promise. In this context, we show the first adversarial perturbation attacks on state-of-the-art CNN-based hotspot detectors; specifically, we show that small (on average 0.5% modified area), functionality preserving, and design-constraint-satisfying changes to a layout can nonetheless trick a CNN-based hotspot detector into predicting the modified layout as hotspot free (with up to 99.7% success in finding perturbations that flip a detector’s output prediction, based on a given set of attack constraints). We propose an adversarial retraining strategy to improve the robustness of CNN-based hotspot detection and show that this strategy significantly improves robustness (by a factor of ~3) against adversarial attacks without compromising classification accuracy.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"41 1","pages":"1 - 31"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3408288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
There is substantial interest in the use of machine learning (ML)-based techniques throughout the electronic computer-aided design (CAD) flow, particularly those based on deep learning. However, while deep learning methods have surpassed state-of-the-art performance in several applications, they have exhibited intrinsic susceptibility to adversarial perturbations—small but deliberate alterations to the input of a neural network, precipitating incorrect predictions. In this article, we seek to investigate whether adversarial perturbations pose risks to ML-based CAD tools, and if so, how these risks can be mitigated. To this end, we use a motivating case study of lithographic hotspot detection, for which convolutional neural networks (CNN) have shown great promise. In this context, we show the first adversarial perturbation attacks on state-of-the-art CNN-based hotspot detectors; specifically, we show that small (on average 0.5% modified area), functionality preserving, and design-constraint-satisfying changes to a layout can nonetheless trick a CNN-based hotspot detector into predicting the modified layout as hotspot free (with up to 99.7% success in finding perturbations that flip a detector’s output prediction, based on a given set of attack constraints). We propose an adversarial retraining strategy to improve the robustness of CNN-based hotspot detection and show that this strategy significantly improves robustness (by a factor of ~3) against adversarial attacks without compromising classification accuracy.