R. H. Virgianto, Rayhan Rivaniputra, Nanda Putri Kinanti, Agung Hari Saputra, A. Khoir
{"title":"A numerical simulation of PM2.5 concentration using the WRF-Chem model during a high air pollution episode in 2019 in Jakarta, Indonesia","authors":"R. H. Virgianto, Rayhan Rivaniputra, Nanda Putri Kinanti, Agung Hari Saputra, A. Khoir","doi":"10.11591/ijaas.v11.i4.pp335-344","DOIUrl":null,"url":null,"abstract":"Jakarta, as a megapolitan city, is always crowded with thousands of vehicles every day which results in decreased air quality due to combustion emissions and may have a significant impact on human health. Particulate matter (PM2.5) is a pollutant that has an aerodynamic diameter of fewer than 2.5 micrometers and very easy to enter the human respiratory system so it can affect health. In the dry season, rain as the main natural mechanism for reducing PM2.5 occurs very rarely, causing an accumulation of PM2.5 concentrations in the atmosphere. The weather research and forecasting model coupled with chemistry (WRF-Chem) model is a dynamic model that works with atmospheric chemistry combined with meteorological variables simultaneously. This study aims to simulate the concentration of PM2.5 in Jakarta during the high air pollution episode from 20 to 29 June 2019 with the WRF-Chem model based on the T1-MOZCART chemical scheme. Spatial analysis was conducted to determine the distribution of PM2.5 concentrations during high air pollution episodes in Jakarta. Validation of the simulation model was based on three observation sites, one in South Jakarta and two in Central Jakarta. The results showed that the highest correlation is 0.3 and the lowest root mean square error (RMSE) is 26.4, while the simulations still tend to overestimate the PM2.5 concentration.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v11.i4.pp335-344","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Jakarta, as a megapolitan city, is always crowded with thousands of vehicles every day which results in decreased air quality due to combustion emissions and may have a significant impact on human health. Particulate matter (PM2.5) is a pollutant that has an aerodynamic diameter of fewer than 2.5 micrometers and very easy to enter the human respiratory system so it can affect health. In the dry season, rain as the main natural mechanism for reducing PM2.5 occurs very rarely, causing an accumulation of PM2.5 concentrations in the atmosphere. The weather research and forecasting model coupled with chemistry (WRF-Chem) model is a dynamic model that works with atmospheric chemistry combined with meteorological variables simultaneously. This study aims to simulate the concentration of PM2.5 in Jakarta during the high air pollution episode from 20 to 29 June 2019 with the WRF-Chem model based on the T1-MOZCART chemical scheme. Spatial analysis was conducted to determine the distribution of PM2.5 concentrations during high air pollution episodes in Jakarta. Validation of the simulation model was based on three observation sites, one in South Jakarta and two in Central Jakarta. The results showed that the highest correlation is 0.3 and the lowest root mean square error (RMSE) is 26.4, while the simulations still tend to overestimate the PM2.5 concentration.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.