An Evolutionary MultiLayer Perceptron Algorithm for Real Time River Flood Prediction

Geerish Suddul, K. Dookhitram, Girish Bekaroo, Nikhilesh Shankhur
{"title":"An Evolutionary MultiLayer Perceptron Algorithm for Real Time River Flood Prediction","authors":"Geerish Suddul, K. Dookhitram, Girish Bekaroo, Nikhilesh Shankhur","doi":"10.1109/ZINC50678.2020.9161824","DOIUrl":null,"url":null,"abstract":"Severe flash flood events give very little opportunity for issuing warnings. In this paper, we approach the automated and real time prediction of river flooding by proposing and evaluating different variations of the conventional Multilayer Perceptron (MLP) machine learning algorithm. Our first approach follows a trial and error attempt to optimize the MLP architecture. The second and third approaches are based on the application of nature inspired evolutionary techniques, namely the Genetic Algorithm (MLP-GA) and the Bat Algorithm (MLP-BA) respectively. The MLP-GA generates an improved MLP configuration and MLP-BA enhances the training method. Our fourth, novel approach (MLP-BA-GA) is based on the application of GA to further optimize both the BA and MLP architecture. When compared with previous work, experiments show improvement in the accuracy of river flood prediction, with significant results for the MLP-BA-GA.","PeriodicalId":6731,"journal":{"name":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"42 1","pages":"109-112"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC50678.2020.9161824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Severe flash flood events give very little opportunity for issuing warnings. In this paper, we approach the automated and real time prediction of river flooding by proposing and evaluating different variations of the conventional Multilayer Perceptron (MLP) machine learning algorithm. Our first approach follows a trial and error attempt to optimize the MLP architecture. The second and third approaches are based on the application of nature inspired evolutionary techniques, namely the Genetic Algorithm (MLP-GA) and the Bat Algorithm (MLP-BA) respectively. The MLP-GA generates an improved MLP configuration and MLP-BA enhances the training method. Our fourth, novel approach (MLP-BA-GA) is based on the application of GA to further optimize both the BA and MLP architecture. When compared with previous work, experiments show improvement in the accuracy of river flood prediction, with significant results for the MLP-BA-GA.
一种用于河流洪水实时预测的进化多层感知器算法
严重的山洪事件几乎没有机会发布警告。在本文中,我们通过提出和评估传统多层感知器(MLP)机器学习算法的不同变体来实现河流洪水的自动实时预测。我们的第一种方法是通过反复试验来优化MLP体系结构。第二和第三种方法是基于自然启发的进化技术的应用,即遗传算法(MLP-GA)和蝙蝠算法(MLP-BA)。MLP- ga生成改进的MLP配置,MLP- ba增强了训练方法。我们的第四种新方法(MLP-BA-GA)基于遗传算法的应用来进一步优化BA和MLP架构。实验结果表明,与前人相比,MLP-BA-GA的预测精度得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信