{"title":"Elucidating the inhibitory effects of rationally designed novel hexapeptide against hen egg white lysozyme fibrillation at acidic and physiological pH","authors":"Amit Mitra, Nandini Sarkar","doi":"10.1016/j.bbapap.2023.140899","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Inhibition of highly ordered cross-β-sheet-rich aggregates of misfolded amyloid proteins using rationally designed sequence-based short peptides is a promising therapeutic strategy for the treatment of neurodegenerative diseases. Here, we have explored the anti-amyloidogenic potency of a rationally designed hexapeptide (Tyr-Pro-Gln-Ile-Pro-Asn) on in vitro hen egg white </span>lysozyme (HEWL) </span>amyloid fibril<span> formation at acidic pH and physiological pH using computational docking as well as various biophysical techniques such as fluorescence spectroscopy, UV–vis spectroscopy, </span></span>FTIR spectroscopy<span><span>, confocal microscopy and </span>TEM. The peptide was designed based on the aggregation-prone region (APR) of HEWL and thus referred to as SqP1 (Sequence-based Peptide 1). SqP1 showed over 70% inhibition of HEWL amyloid formation at pH 2.2 and approximately 50% inhibition at pH 7.5. We propose that SqP1 binds to the APR of HEWL and interacts strongly with the Trp62/Trp63, ultimately stabilizing monomeric HEWL at both the pH conditions and preventing conformation changes in the structure of HEWL, leading to the formation of amyloidogenic fibrillar structures. A sequence-based peptide inhibitor of HEWL amyloid formation was not reported previously, making this a critical study that will further emphasize the importance of short synthetic peptides as amyloid inhibitors.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibition of highly ordered cross-β-sheet-rich aggregates of misfolded amyloid proteins using rationally designed sequence-based short peptides is a promising therapeutic strategy for the treatment of neurodegenerative diseases. Here, we have explored the anti-amyloidogenic potency of a rationally designed hexapeptide (Tyr-Pro-Gln-Ile-Pro-Asn) on in vitro hen egg white lysozyme (HEWL) amyloid fibril formation at acidic pH and physiological pH using computational docking as well as various biophysical techniques such as fluorescence spectroscopy, UV–vis spectroscopy, FTIR spectroscopy, confocal microscopy and TEM. The peptide was designed based on the aggregation-prone region (APR) of HEWL and thus referred to as SqP1 (Sequence-based Peptide 1). SqP1 showed over 70% inhibition of HEWL amyloid formation at pH 2.2 and approximately 50% inhibition at pH 7.5. We propose that SqP1 binds to the APR of HEWL and interacts strongly with the Trp62/Trp63, ultimately stabilizing monomeric HEWL at both the pH conditions and preventing conformation changes in the structure of HEWL, leading to the formation of amyloidogenic fibrillar structures. A sequence-based peptide inhibitor of HEWL amyloid formation was not reported previously, making this a critical study that will further emphasize the importance of short synthetic peptides as amyloid inhibitors.