{"title":"Asymptotic and finite sample properties of Hill-type estimators in the presence of errors in observations","authors":"Mihyun Kim, P. Kokoszka","doi":"10.1080/10485252.2022.2136662","DOIUrl":null,"url":null,"abstract":"We establish asymptotic and finite sample properties of the Hill and Harmonic Moment estimators applied to heavy-tailed data contaminated by errors. We formulate conditions on the errors and the number of upper order statistics under which these estimators continue to be asymptotically normal. We specify analogous conditions which must hold in finite samples for the confidence intervals derived from the asymptotic normal distribution to be reliable. In the large sample analysis, we specify conditions related to second-order regular variation and divergence rates for the number of upper order statistics, k, used to compute the estimators. In the finite sample analysis, we examine several data-driven methods of selecting k, and determine which of them are most suitable for confidence interval inference. The results of these investigations are applied to interarrival times of internet traffic anomalies, which are available only with a round-off error.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"76 1","pages":"1 - 18"},"PeriodicalIF":0.8000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2022.2136662","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We establish asymptotic and finite sample properties of the Hill and Harmonic Moment estimators applied to heavy-tailed data contaminated by errors. We formulate conditions on the errors and the number of upper order statistics under which these estimators continue to be asymptotically normal. We specify analogous conditions which must hold in finite samples for the confidence intervals derived from the asymptotic normal distribution to be reliable. In the large sample analysis, we specify conditions related to second-order regular variation and divergence rates for the number of upper order statistics, k, used to compute the estimators. In the finite sample analysis, we examine several data-driven methods of selecting k, and determine which of them are most suitable for confidence interval inference. The results of these investigations are applied to interarrival times of internet traffic anomalies, which are available only with a round-off error.
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.