Local uniqueness of multi-peak solutions to a class of Kirchhoff equations

IF 0.9 4区 数学 Q2 Mathematics
Gongbao Li, Yahui Niu, Chang-Lin Xiang
{"title":"Local uniqueness of multi-peak solutions to a class of Kirchhoff equations","authors":"Gongbao Li, Yahui Niu, Chang-Lin Xiang","doi":"10.5186/aasfm.2020.4503","DOIUrl":null,"url":null,"abstract":"where ǫ > 0 is a parameter, V : R → R is a bounded continuous function. Under some mild conditions on V , Luo, Peng, Wang and the last named author of the present paper [22] proved the existence of multi-peak solutions to (1.1). As a continuation of the work [22], this paper is devoted to establish a local uniqueness result for the multi-peak solutions obtained there. For physical background for equation (1.1), the readers are referred to Luo et al. [22] and the references therein. To be precise, we first give the definition of k-peak solutions of Eq. (1.1) as usual. Definition 1.1. Let k ∈ N, bj ∈ R , 1 ≤ j ≤ k. We say that uǫ ∈ H (R) is a k-peak solution of (1.1) concentrated at {b1, b2, · · · , bk}, if (i) uǫ has k local maximum points x j ǫ ∈ R , j = 1, 2, . . . , k, satisfying xǫ → bj as ǫ→ 0 for each j; (ii) For any given τ > 0, there exists R ≫ 1, such that |uǫ(x)| ≤ τ for x ∈ R \\ ∪j=1 BRǫ(x j ǫ);","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4503","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

where ǫ > 0 is a parameter, V : R → R is a bounded continuous function. Under some mild conditions on V , Luo, Peng, Wang and the last named author of the present paper [22] proved the existence of multi-peak solutions to (1.1). As a continuation of the work [22], this paper is devoted to establish a local uniqueness result for the multi-peak solutions obtained there. For physical background for equation (1.1), the readers are referred to Luo et al. [22] and the references therein. To be precise, we first give the definition of k-peak solutions of Eq. (1.1) as usual. Definition 1.1. Let k ∈ N, bj ∈ R , 1 ≤ j ≤ k. We say that uǫ ∈ H (R) is a k-peak solution of (1.1) concentrated at {b1, b2, · · · , bk}, if (i) uǫ has k local maximum points x j ǫ ∈ R , j = 1, 2, . . . , k, satisfying xǫ → bj as ǫ→ 0 for each j; (ii) For any given τ > 0, there exists R ≫ 1, such that |uǫ(x)| ≤ τ for x ∈ R \ ∪j=1 BRǫ(x j ǫ);
一类Kirchhoff方程多峰解的局部唯一性
其中,R > 0为参数,V: R→R为有界连续函数。在V上的一些温和条件下,本文的Luo, Peng, Wang等[22]证明了(1.1)的多峰解的存在性。作为工作[22]的延续,本文致力于对得到的多峰解建立一个局部唯一性结果。方程(1.1)的物理背景可参考Luo等人[22]及其参考文献。准确地说,我们首先像往常一样给出Eq.(1.1)的k峰解的定义。定义1.1。设k∈N, bj∈R, 1≤j≤k,我们设uir∈H (R)是(1.1)集中于{b1, b2,···,bk}处的k峰解,如果(i) uir有k个局部最大值点x j∈R, j = 1,2,…, k,对于每一个j,满足xj→bj为*→0;(ii)对于任意给定τ > 0,存在R < 1,使得对于x∈R \∪j=1 brir (x j æ), | uir (x)|≤τ;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信