Numerical Simulation of Airflow and Ellipsoidal Particle Deposition in Human Upper Respiratory Tract

Morteza Kiasadegh, O. Abouali, H. Emdad, G. Ahmadi
{"title":"Numerical Simulation of Airflow and Ellipsoidal Particle Deposition in Human Upper Respiratory Tract","authors":"Morteza Kiasadegh, O. Abouali, H. Emdad, G. Ahmadi","doi":"10.1115/FEDSM2018-83380","DOIUrl":null,"url":null,"abstract":"In this study, unsteady flow field and fibrous particle deposition in a realistic model of human upper airway system including vestibule to the end of trachea were investigated using the CFD technique. The airway passage model was constructed from the CT image of a 24 year old healthy woman.\n Unsteady airflow patterns during a full breathing cycle were simulated by solving the Navier-Stokes and continuity equations. For ellipsoidal fiber trajectory analysis under cyclic breathing condition, several user defined functions (UDFs) were coupled to the ANSYS-Fluent discrete phase model (DPM). The presented formulation accounted for solving the coupled translational and rotational equations of motion of ellipsoidal fibers.\n Total and regional depositions for a range of fiber sizes were evaluated. The transient particle deposition fraction was compared with those obtained from the equivalent steady flow condition. The presented results showed that the steady simulation can predict the total fibrous particle deposition during cyclic breathing with reasonable accuracy but cannot properly predict the regional deposition of particles.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, unsteady flow field and fibrous particle deposition in a realistic model of human upper airway system including vestibule to the end of trachea were investigated using the CFD technique. The airway passage model was constructed from the CT image of a 24 year old healthy woman. Unsteady airflow patterns during a full breathing cycle were simulated by solving the Navier-Stokes and continuity equations. For ellipsoidal fiber trajectory analysis under cyclic breathing condition, several user defined functions (UDFs) were coupled to the ANSYS-Fluent discrete phase model (DPM). The presented formulation accounted for solving the coupled translational and rotational equations of motion of ellipsoidal fibers. Total and regional depositions for a range of fiber sizes were evaluated. The transient particle deposition fraction was compared with those obtained from the equivalent steady flow condition. The presented results showed that the steady simulation can predict the total fibrous particle deposition during cyclic breathing with reasonable accuracy but cannot properly predict the regional deposition of particles.
人上呼吸道气流及椭球状颗粒沉积的数值模拟
本文采用CFD技术,对人体上呼吸道系统(包括前庭至气管末端)的非定常流场和纤维颗粒沉积进行了研究。以24岁健康女性的CT图像为基础,建立了气道通道模型。通过求解Navier-Stokes方程和连续性方程,模拟了全呼吸周期的非定常流场。为了分析循环呼吸条件下的椭球光纤轨迹,将几个用户定义函数(udf)耦合到ANSYS-Fluent离散相位模型(DPM)中。该公式用于求解椭球纤维的平移和旋转耦合运动方程。对不同纤维尺寸的总沉积和区域沉积进行了评价。将瞬态颗粒沉积分数与等效定常流动条件下得到的分数进行了比较。结果表明,稳态模拟可以较准确地预测循环呼吸过程中纤维颗粒的总沉积,但不能正确预测颗粒的区域沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信