Deep learning fusion of satellite and social information to estimate human migratory flows.

Q3 Physics and Astronomy
Synchrotron Radiation News Pub Date : 2022-09-01 Epub Date: 2022-06-27 DOI:10.1111/tgis.12953
Daniel Runfola, Heather Baier, Laura Mills, Maeve Naughton-Rockwell, Anthony Stefanidis
{"title":"Deep learning fusion of satellite and social information to estimate human migratory flows.","authors":"Daniel Runfola, Heather Baier, Laura Mills, Maeve Naughton-Rockwell, Anthony Stefanidis","doi":"10.1111/tgis.12953","DOIUrl":null,"url":null,"abstract":"<p><p>Human migratory decisions are driven by a wide range of factors, including economic and environmental conditions, conflict, and evolving social dynamics. These factors are reflected in disparate data sources, including household surveys, satellite imagery, and even news and social media. Here, we present a deep learning-based data fusion technique integrating satellite and census data to estimate migratory flows from Mexico to the United States. We leverage a three-stage approach, in which we (1) construct a matrix-based representation of socioeconomic information for each municipality in Mexico, (2) implement a convolutional neural network with both satellite imagery and the constructed socioeconomic matrix, and (3) use the output vectors of information to estimate migratory flows. We find that this approach outperforms alternatives by approximately 10% (<i>r</i> <sup>2</sup>), suggesting multi-modal data fusion provides a valuable pathway forward for modeling migratory processes.</p>","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"30 1","pages":"2495-2518"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synchrotron Radiation News","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.12953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Human migratory decisions are driven by a wide range of factors, including economic and environmental conditions, conflict, and evolving social dynamics. These factors are reflected in disparate data sources, including household surveys, satellite imagery, and even news and social media. Here, we present a deep learning-based data fusion technique integrating satellite and census data to estimate migratory flows from Mexico to the United States. We leverage a three-stage approach, in which we (1) construct a matrix-based representation of socioeconomic information for each municipality in Mexico, (2) implement a convolutional neural network with both satellite imagery and the constructed socioeconomic matrix, and (3) use the output vectors of information to estimate migratory flows. We find that this approach outperforms alternatives by approximately 10% (r 2), suggesting multi-modal data fusion provides a valuable pathway forward for modeling migratory processes.

融合卫星和社会信息的深度学习估算人口迁移流动。
人类迁徙的决定是由一系列因素驱动的,包括经济和环境条件、冲突和不断变化的社会动态。这些因素反映在不同的数据来源中,包括家庭调查、卫星图像,甚至新闻和社交媒体。在这里,我们提出了一种基于深度学习的数据融合技术,结合卫星和人口普查数据来估计从墨西哥到美国的移民流量。我们利用了一个三阶段的方法,其中我们(1)为墨西哥每个城市构建基于矩阵的社会经济信息表示,(2)使用卫星图像和构建的社会经济矩阵实现卷积神经网络,以及(3)使用信息的输出向量来估计移民流。我们发现,这种方法比其他方法要好约10% (r2),这表明多模态数据融合为迁移过程建模提供了一条有价值的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Synchrotron Radiation News
Synchrotron Radiation News Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
1.30
自引率
0.00%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信