{"title":"An immunoinformatics and structural vaccinology study to design a multi-epitope vaccine against Staphylococcus aureus infection","authors":"Rahul Chatterjee, Soumya Ranjan Mahapatra, Jyotirmayee Dey, Kiran Raj Takur, Vishakha Raina, Namrata Misra, Mrutyunjay Suar","doi":"10.1002/jmr.3007","DOIUrl":null,"url":null,"abstract":"<p><i>Staphylococcus aureus</i> has been widely reported to be majorly responsible for causing nosocomial infections worldwide. Due to an increase in antibiotic-resistant strains, the development of an effective vaccine against the bacteria is the most viable alternative. Therefore, in the current work, an effort has been undertaken to develop a novel peptide-based vaccine construct against <i>S aureus</i> that can potentially evoke the B and T cell immune responses. The fibronectin-binding proteins are an attractive target as they play a prominent role in bacterial adherence and host cell invasion and are also well conserved among rapidly mutating pathogens. Therefore, highly immunogenic linear B lymphocytes (LBL), cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) epitopes were identified from the antigenic fibronectin-binding proteins A and B (FnBPA and FnBPB) of <i>S aureus</i> using immunoinformatics approaches. The selected peptides were confirmed to be non-allergenic, non-toxic, and with a high binding affinity to the majority of human leukocyte antigens (HLA) alleles. Consequently, the multi-peptide vaccine construct was developed by fusing the screened epitopes (three LBL, five CTL, and two HTL) together with the suitable adjuvant and linkers. In addition, the tertiary conformation of the peptide construct was modeled and later docked to the Toll-like receptor 2. Subsequently, a molecular dynamics simulation of 100 ns was employed to corroborate the stability of the designed vaccine-receptor complex. Besides exhibiting high immunogenicity and conformational stability, the developed vaccine was observed to possess wide population coverage of 99.51% worldwide. Additional in vivo and in vitro validation studies would certainly corroborate the designed vaccine construct to have improved prophylactic efficacy against <i>S aureus</i>.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Staphylococcus aureus has been widely reported to be majorly responsible for causing nosocomial infections worldwide. Due to an increase in antibiotic-resistant strains, the development of an effective vaccine against the bacteria is the most viable alternative. Therefore, in the current work, an effort has been undertaken to develop a novel peptide-based vaccine construct against S aureus that can potentially evoke the B and T cell immune responses. The fibronectin-binding proteins are an attractive target as they play a prominent role in bacterial adherence and host cell invasion and are also well conserved among rapidly mutating pathogens. Therefore, highly immunogenic linear B lymphocytes (LBL), cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) epitopes were identified from the antigenic fibronectin-binding proteins A and B (FnBPA and FnBPB) of S aureus using immunoinformatics approaches. The selected peptides were confirmed to be non-allergenic, non-toxic, and with a high binding affinity to the majority of human leukocyte antigens (HLA) alleles. Consequently, the multi-peptide vaccine construct was developed by fusing the screened epitopes (three LBL, five CTL, and two HTL) together with the suitable adjuvant and linkers. In addition, the tertiary conformation of the peptide construct was modeled and later docked to the Toll-like receptor 2. Subsequently, a molecular dynamics simulation of 100 ns was employed to corroborate the stability of the designed vaccine-receptor complex. Besides exhibiting high immunogenicity and conformational stability, the developed vaccine was observed to possess wide population coverage of 99.51% worldwide. Additional in vivo and in vitro validation studies would certainly corroborate the designed vaccine construct to have improved prophylactic efficacy against S aureus.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.