O. Netskina, T. N. Filippov, O. V. Komova, V. Simagina
{"title":"Hydrogen generation by both acidic and catalytic hydrolysis of sodium borohydride","authors":"O. Netskina, T. N. Filippov, O. V. Komova, V. Simagina","doi":"10.1515/cse-2018-0006","DOIUrl":null,"url":null,"abstract":"Abstract Sodium borohydride tablets have been employed as hydrogen-storage materials. Hydrogen release was performed by acidic hydrolysis where solutions of sulfuric and hydrochloric acids were added to the tablets, and by catalytic hydrolysis where water was added tablets of solid-state NaBH4/Co composite. In acidic solutions hydrogen evolution occurred instantaneously, and at high concentrations of acids the releasing hydrogen contained an admixture of diborane. Hydrogen evolution from the solidstate NaBH4/Co composite proceeded at a uniform rate of 13.8±0.1 cm3·min-1, water vapor being the only impurity in the evolving gas.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"30 1","pages":"41 - 48"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cse-2018-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Abstract Sodium borohydride tablets have been employed as hydrogen-storage materials. Hydrogen release was performed by acidic hydrolysis where solutions of sulfuric and hydrochloric acids were added to the tablets, and by catalytic hydrolysis where water was added tablets of solid-state NaBH4/Co composite. In acidic solutions hydrogen evolution occurred instantaneously, and at high concentrations of acids the releasing hydrogen contained an admixture of diborane. Hydrogen evolution from the solidstate NaBH4/Co composite proceeded at a uniform rate of 13.8±0.1 cm3·min-1, water vapor being the only impurity in the evolving gas.