DOLFIN-digit online for integration neural networks

A. Wassatsch, M. Haase, D. Timmermann
{"title":"DOLFIN-digit online for integration neural networks","authors":"A. Wassatsch, M. Haase, D. Timmermann","doi":"10.1109/ISCAS.2000.856132","DOIUrl":null,"url":null,"abstract":"In this paper we describe an approach for using digit online arithmetic in the field of neural network computation. Digit online, a serial most significant digit first arithmetic, shows significant advantages over all other digital implementations. The serial communication between the online modules make the implementation of connection intensive networks feasible. The accuracy of the computation is only loosely coupled with the chosen digit level range, which determine the necessary count of interconnections. Furthermore, the accuracy is eligible through the length of the processed digit vector. The goal of this paper is to develop a strategy for the implementation of different network models. The comparison with the results of other implementations illustrate the advantages of the digit online approaches and the suitability for the application in the field of neural networks.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.856132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we describe an approach for using digit online arithmetic in the field of neural network computation. Digit online, a serial most significant digit first arithmetic, shows significant advantages over all other digital implementations. The serial communication between the online modules make the implementation of connection intensive networks feasible. The accuracy of the computation is only loosely coupled with the chosen digit level range, which determine the necessary count of interconnections. Furthermore, the accuracy is eligible through the length of the processed digit vector. The goal of this paper is to develop a strategy for the implementation of different network models. The comparison with the results of other implementations illustrate the advantages of the digit online approaches and the suitability for the application in the field of neural networks.
dolfin数字在线集成神经网络
本文描述了在神经网络计算领域中使用数字在线算法的一种方法。数字在线是一种串行最高有效数字优先算法,与所有其他数字实现相比具有显著的优势。在线模块之间的串行通信使连接密集型网络的实现成为可能。计算的精度只与所选择的数字电平范围松散耦合,这决定了互连的必要计数。此外,通过处理的数字向量的长度来确定精度。本文的目标是为实现不同的网络模型制定一种策略。通过与其他实现结果的比较,说明了数字在线方法的优点和在神经网络领域的应用适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信