Alina K. Bakunova , Alexey A. Kostyukov , Vladimir A. Kuzmin , Vladimir O. Popov , Ekaterina Yu. Bezsudnova
{"title":"Mechanistic aspects of the transamination reactions catalyzed by D-amino acid transaminase from Haliscomenobacter hydrossis","authors":"Alina K. Bakunova , Alexey A. Kostyukov , Vladimir A. Kuzmin , Vladimir O. Popov , Ekaterina Yu. Bezsudnova","doi":"10.1016/j.bbapap.2022.140886","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Pyridoxal-5′-phosphate-(PLP-) dependent D-amino acid transaminases<span> (DAATs) catalyze stereoselective reversible transfer of the amino group between D-amino acids and keto acids. In vivo DAATs are commonly known to synthesize D-glutamate for cell wall </span></span>peptidoglycans. Today DAATs meet increasing attention for application in the synthesis of D-amino acids, whereas little is known about the mechanism of substrate recognition and catalytic steps of the D-amino acids conversion by DAATs. In this work, the pre-steady-state kinetics of the half-reactions of DAAT from </span><em>Haliscomenobacter hydrossis</em><span><span><span> with D-glutamate, D-alanine, D-leucine, and D-phenylalanine was examined at two wavelengths, 416 and 330 nm, using a stopped-flow technique. Monophasic kinetics was observed with specific substrates D-glutamate and D-alanine, whereas half-reactions with D-leucine and D-phenylalanine exhibited biphasic kinetics. All half-reactions proceeded until the complete conversion of PLP due to the release of the pyridoxamine-5′-phosphate form of cofactor from the holoenzyme . Comparison of </span>kinetic parameters of half-reactions and the overall </span>transamination<span> reactions for D-leucine, D-phenylalanine revealed the increase in the rates of deamination of these substrates in the overall reaction with α-ketoglutarate. In the overall transamination reaction, the catalytic turnover rates for D-leucine and D-phenylalanine increased by 260 and 60 times, correspondingly, comparing with the slowest step rate constants in the half-reactions. We suggested the activating effect by a specific substrate α-ketoglutarate in the overall transamination reaction. The study of half-reactions helped to quantify the specificity of DAAT from </span></span><em>H. hydrossis</em> for D-amino acids with different properties. The results obtained are the first detailed analysis of half-reactions catalyzed by DAAT.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 2","pages":"Article 140886"},"PeriodicalIF":2.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963922001339","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pyridoxal-5′-phosphate-(PLP-) dependent D-amino acid transaminases (DAATs) catalyze stereoselective reversible transfer of the amino group between D-amino acids and keto acids. In vivo DAATs are commonly known to synthesize D-glutamate for cell wall peptidoglycans. Today DAATs meet increasing attention for application in the synthesis of D-amino acids, whereas little is known about the mechanism of substrate recognition and catalytic steps of the D-amino acids conversion by DAATs. In this work, the pre-steady-state kinetics of the half-reactions of DAAT from Haliscomenobacter hydrossis with D-glutamate, D-alanine, D-leucine, and D-phenylalanine was examined at two wavelengths, 416 and 330 nm, using a stopped-flow technique. Monophasic kinetics was observed with specific substrates D-glutamate and D-alanine, whereas half-reactions with D-leucine and D-phenylalanine exhibited biphasic kinetics. All half-reactions proceeded until the complete conversion of PLP due to the release of the pyridoxamine-5′-phosphate form of cofactor from the holoenzyme . Comparison of kinetic parameters of half-reactions and the overall transamination reactions for D-leucine, D-phenylalanine revealed the increase in the rates of deamination of these substrates in the overall reaction with α-ketoglutarate. In the overall transamination reaction, the catalytic turnover rates for D-leucine and D-phenylalanine increased by 260 and 60 times, correspondingly, comparing with the slowest step rate constants in the half-reactions. We suggested the activating effect by a specific substrate α-ketoglutarate in the overall transamination reaction. The study of half-reactions helped to quantify the specificity of DAAT from H. hydrossis for D-amino acids with different properties. The results obtained are the first detailed analysis of half-reactions catalyzed by DAAT.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.