Susan E. Martonosi, Martin Gonzalez, Nicolas Oshiro
{"title":"Predicting elite NBA lineups using individual player order statistics","authors":"Susan E. Martonosi, Martin Gonzalez, Nicolas Oshiro","doi":"10.1515/jqas-2022-0039","DOIUrl":null,"url":null,"abstract":"Abstract NBA team managers and owners try to acquire high-performing players. An important consideration in these decisions is how well the new players will perform in combination with their teammates. Our objective is to identify elite five-person lineups, which we define as those having a positive plus-minus per minute (PMM). Using individual player order statistics, our model can identify an elite lineup even if the five players in the lineup have never played together, which can inform player acquisition decisions, salary negotiations, and real-time coaching decisions. We combine seven classification tools into a unanimous consent classifier (all-or-nothing classifier, or ANC) in which a lineup is predicted to be elite only if all seven classifiers predict it to be elite. In this way, we achieve high positive predictive value (i.e., precision), the likelihood that a lineup classified as elite will indeed have a positive PMM. We train and test the model on individual player and lineup data from the 2017–18 season and use the model to predict the performance of lineups drawn from all 30 NBA teams’ 2018–19 regular season rosters. Although the ANC is conservative and misses some high-performing lineups, it achieves high precision and recommends positionally balanced lineups.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2022-0039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract NBA team managers and owners try to acquire high-performing players. An important consideration in these decisions is how well the new players will perform in combination with their teammates. Our objective is to identify elite five-person lineups, which we define as those having a positive plus-minus per minute (PMM). Using individual player order statistics, our model can identify an elite lineup even if the five players in the lineup have never played together, which can inform player acquisition decisions, salary negotiations, and real-time coaching decisions. We combine seven classification tools into a unanimous consent classifier (all-or-nothing classifier, or ANC) in which a lineup is predicted to be elite only if all seven classifiers predict it to be elite. In this way, we achieve high positive predictive value (i.e., precision), the likelihood that a lineup classified as elite will indeed have a positive PMM. We train and test the model on individual player and lineup data from the 2017–18 season and use the model to predict the performance of lineups drawn from all 30 NBA teams’ 2018–19 regular season rosters. Although the ANC is conservative and misses some high-performing lineups, it achieves high precision and recommends positionally balanced lineups.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.