Early life vitamin D depletion and mechanical loading determine methylation changes in the RUNX2, RXRA, and osterix promoters in mice.

Nevena Krstic, Nick Bishop, Beth Curtis, Cyrus Cooper, Nick Harvey, Karen Lilycrop, Robert Murray, Robert Owen, Gwen Reilly, Tim Skerry, Steph Borg
{"title":"Early life vitamin D depletion and mechanical loading determine methylation changes in the RUNX2, RXRA, and osterix promoters in mice.","authors":"Nevena Krstic, Nick Bishop, Beth Curtis, Cyrus Cooper, Nick Harvey, Karen Lilycrop, Robert Murray, Robert Owen, Gwen Reilly, Tim Skerry, Steph Borg","doi":"10.1186/s12263-022-00711-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early life vitamin D exposure is linked to later skeletal health with maternal vitamin D status in pregnancy associated with neonatal bone mass. The MAVIDOS study has demonstrated that vitamin D supplementation leads to reduced RXRA DNA methylation. Mice exposed to early life vitamin D deficiency have reduced bone mass and bone accrual in response to mechanical loading. Using the tibiae of these mice, we have examined the effect of diet and mechanical loading on the DNA methylation of promoters of genetic loci important for bone growth and development and their association with bone strength.</p><p><strong>Results: </strong>Mechanical loading of mouse tibiae leads to a reduction of RXRA DNA methylation. Early life vitamin D deficiency is associated with altered methylation of osterix and Runx2 in these bones. Tibia strength was also demonstrated to be associated with a change in DNA methylation status in CpGs of the vitamin D receptor (VDR), ostrix, and RXRA genes.</p><p><strong>Conclusions: </strong>We have shown for the first time that mechanical loading of bone and early life vitamin D deficiency leads to changes in the epigenome of this tissue in key genes in the vitamin D and osteoblast differentiation pathway.</p>","PeriodicalId":12554,"journal":{"name":"Genes & Nutrition","volume":"17 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12263-022-00711-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Early life vitamin D exposure is linked to later skeletal health with maternal vitamin D status in pregnancy associated with neonatal bone mass. The MAVIDOS study has demonstrated that vitamin D supplementation leads to reduced RXRA DNA methylation. Mice exposed to early life vitamin D deficiency have reduced bone mass and bone accrual in response to mechanical loading. Using the tibiae of these mice, we have examined the effect of diet and mechanical loading on the DNA methylation of promoters of genetic loci important for bone growth and development and their association with bone strength.

Results: Mechanical loading of mouse tibiae leads to a reduction of RXRA DNA methylation. Early life vitamin D deficiency is associated with altered methylation of osterix and Runx2 in these bones. Tibia strength was also demonstrated to be associated with a change in DNA methylation status in CpGs of the vitamin D receptor (VDR), ostrix, and RXRA genes.

Conclusions: We have shown for the first time that mechanical loading of bone and early life vitamin D deficiency leads to changes in the epigenome of this tissue in key genes in the vitamin D and osteoblast differentiation pathway.

Abstract Image

Abstract Image

Abstract Image

早期生命维生素D缺失和机械负荷决定小鼠RUNX2、RXRA和骨化启动子的甲基化变化。
背景:早期接触维生素D与后期骨骼健康有关,妊娠期母体维生素D状况与新生儿骨量有关。MAVIDOS研究表明,补充维生素D可减少RXRA DNA甲基化。暴露于早期维生素D缺乏症的小鼠对机械负荷的反应降低了骨量和骨积累。利用这些小鼠的胫骨,我们研究了饮食和机械负荷对骨生长发育重要基因座启动子DNA甲基化的影响,以及它们与骨强度的关系。结果:小鼠胫骨的机械负荷导致RXRA DNA甲基化的减少。早期维生素D缺乏与这些骨骼中osterix和Runx2的甲基化改变有关。胫骨强度也被证明与维生素D受体(VDR)、ostrix和RXRA基因CpG中DNA甲基化状态的变化有关。结论:我们首次表明,骨骼的机械负荷和早期维生素D缺乏会导致该组织表观基因组中维生素D和成骨细胞分化途径中关键基因的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信