RegVar: Tissue-specific Prioritization of Non-coding Regulatory Variants

Hao Lu, Luyu Ma, Cheng Quan, Lei Li, Yiming Lu, Gangqiao Zhou, Chenggang Zhang
{"title":"RegVar: Tissue-specific Prioritization of Non-coding Regulatory Variants","authors":"Hao Lu, Luyu Ma, Cheng Quan, Lei Li, Yiming Lu, Gangqiao Zhou, Chenggang Zhang","doi":"10.1101/2021.04.17.440295","DOIUrl":null,"url":null,"abstract":"Noncoding genomic variants constitute the majority of trait-associated genome variations; however, identification of functional noncoding variants is still a challenge in human genetics, and a method systematically assessing the impact of regulatory variants on gene expression and linking them to potential target genes is still lacking. Here we introduce a deep neural network (DNN)-based computational framework, RegVar, that can accurately predict the tissue-specific impact of noncoding regulatory variants on target genes. We show that, by robustly learning the genomic characteristics of massive variant-gene expression associations in a variety of human tissues, RegVar vastly surpasses all current noncoding variants prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a webserver at http://regvar.cbportal.org/.","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":"31 1","pages":"385 - 395"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.04.17.440295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Noncoding genomic variants constitute the majority of trait-associated genome variations; however, identification of functional noncoding variants is still a challenge in human genetics, and a method systematically assessing the impact of regulatory variants on gene expression and linking them to potential target genes is still lacking. Here we introduce a deep neural network (DNN)-based computational framework, RegVar, that can accurately predict the tissue-specific impact of noncoding regulatory variants on target genes. We show that, by robustly learning the genomic characteristics of massive variant-gene expression associations in a variety of human tissues, RegVar vastly surpasses all current noncoding variants prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a webserver at http://regvar.cbportal.org/.
RegVar:非编码调控变异的组织特异性优先级
非编码基因组变异构成了性状相关基因组变异的大部分;然而,功能性非编码变异的鉴定仍然是人类遗传学的一个挑战,并且系统地评估调控变异对基因表达的影响并将其与潜在靶基因联系起来的方法仍然缺乏。在这里,我们引入了一个基于深度神经网络(DNN)的计算框架RegVar,该框架可以准确预测非编码调控变异对靶基因的组织特异性影响。我们发现,通过强大地学习各种人体组织中大量变异基因表达关联的基因组特征,RegVar在预测不同情况下的调控变异方面大大超过了所有当前的非编码变异优先排序方法。RegVar的独特功能使其成为评估各种组织中任何变体对其假定靶基因的调节影响的绝佳框架。RegVar作为一个web服务器可以在http://regvar.cbportal.org/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信