A fourth‐moment phenomenon for asymptotic normality of monochromatic subgraphs

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Sayan Das, Z. Himwich, Nitya Mani
{"title":"A fourth‐moment phenomenon for asymptotic normality of monochromatic subgraphs","authors":"Sayan Das, Z. Himwich, Nitya Mani","doi":"10.1002/rsa.21166","DOIUrl":null,"url":null,"abstract":"Given a graph sequence {Gn}n≥1$$ {\\left\\{{G}_n\\right\\}}_{n\\ge 1} $$ and a simple connected subgraph H$$ H $$ , we denote by T(H,Gn)$$ T\\left(H,{G}_n\\right) $$ the number of monochromatic copies of H$$ H $$ in a uniformly random vertex coloring of Gn$$ {G}_n $$ with c≥2$$ c\\ge 2 $$ colors. We prove a central limit theorem for T(H,Gn)$$ T\\left(H,{G}_n\\right) $$ (we denote the appropriately centered and rescaled statistic as Z(H,Gn)$$ Z\\left(H,{G}_n\\right) $$ ) with explicit error rates. The error rates arise from graph counts of collections formed by joining copies of H$$ H $$ which we call good joins. Good joins are closely related to the fourth moment of Z(H,Gn)$$ Z\\left(H,{G}_n\\right) $$ , which allows us to show a fourth moment phenomenon for the central limit theorem. For c≥30$$ c\\ge 30 $$ , we show that Z(H,Gn)$$ Z\\left(H,{G}_n\\right) $$ converges in distribution to 𝒩(0,1) whenever its fourth moment converges to 3. We show the convergence of the fourth moment is necessary to obtain a normal limit when c≥2$$ c\\ge 2 $$ .","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"80 1","pages":"968 - 996"},"PeriodicalIF":0.9000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21166","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph sequence {Gn}n≥1$$ {\left\{{G}_n\right\}}_{n\ge 1} $$ and a simple connected subgraph H$$ H $$ , we denote by T(H,Gn)$$ T\left(H,{G}_n\right) $$ the number of monochromatic copies of H$$ H $$ in a uniformly random vertex coloring of Gn$$ {G}_n $$ with c≥2$$ c\ge 2 $$ colors. We prove a central limit theorem for T(H,Gn)$$ T\left(H,{G}_n\right) $$ (we denote the appropriately centered and rescaled statistic as Z(H,Gn)$$ Z\left(H,{G}_n\right) $$ ) with explicit error rates. The error rates arise from graph counts of collections formed by joining copies of H$$ H $$ which we call good joins. Good joins are closely related to the fourth moment of Z(H,Gn)$$ Z\left(H,{G}_n\right) $$ , which allows us to show a fourth moment phenomenon for the central limit theorem. For c≥30$$ c\ge 30 $$ , we show that Z(H,Gn)$$ Z\left(H,{G}_n\right) $$ converges in distribution to 𝒩(0,1) whenever its fourth moment converges to 3. We show the convergence of the fourth moment is necessary to obtain a normal limit when c≥2$$ c\ge 2 $$ .
单色子图渐近正态性的一个四矩现象
给定图序列{Gnn}≥1 $$ {\left\{{G}_n\right\}}_{n\ge 1} $$和简单连通子图H $$ H $$,我们用T(H,Gn) $$ T\left(H,{G}_n\right) $$表示在Gn $$ {G}_n $$的c≥2个$$ c\ge 2 $$颜色的均匀随机顶点着色中H $$ H $$的单色副本数。我们用显式错误率证明了T(H,Gn) $$ T\left(H,{G}_n\right) $$的中心极限定理(我们将适当居中并重新缩放的统计量表示为Z(H,Gn) $$ Z\left(H,{G}_n\right) $$)。错误率来自于通过连接H $$ H $$副本形成的集合的图计数,我们称之为良好的连接。良好的连接与Z(H,Gn) $$ Z\left(H,{G}_n\right) $$的第四矩密切相关,这使我们能够展示中心极限定理的第四矩现象。对于c≥30 $$ c\ge 30 $$,我们证明当Z(H,Gn) $$ Z\left(H,{G}_n\right) $$的第四阶矩收敛于3时,它的分布收敛于(0,1)。我们证明了当c≥2 $$ c\ge 2 $$时,第四矩的收敛性对于得到一个正规极限是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信