Modeling of a Fractional Order Element Based on Bacterial Cellulose and Ionic Liquids

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
R. Caponetto, S. Graziani, E. Murgano, C. Trigona, A. Pollicino, G. Pasquale
{"title":"Modeling of a Fractional Order Element Based on Bacterial Cellulose and Ionic Liquids","authors":"R. Caponetto, S. Graziani, E. Murgano, C. Trigona, A. Pollicino, G. Pasquale","doi":"10.1115/1.4049796","DOIUrl":null,"url":null,"abstract":"\n In this paper, a novel fractional-order element (FOE) is modeled in a wide frequency range. The FOE is based on a green biopolymer, i.e., bacterial cellulose (BC), infused with ionic liquids (ILs). The modeling is performed in the frequency domain and a lumped-circuit model is proposed. The model is an evolution with respect to a simpler one already introduced by the authors, for a narrower frequency range. Results show that ILs generate a quite complex frequency domain behavior, which can be described in the framework of FOEs. Furthermore, results on the time stability of the device under investigation are given.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049796","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a novel fractional-order element (FOE) is modeled in a wide frequency range. The FOE is based on a green biopolymer, i.e., bacterial cellulose (BC), infused with ionic liquids (ILs). The modeling is performed in the frequency domain and a lumped-circuit model is proposed. The model is an evolution with respect to a simpler one already introduced by the authors, for a narrower frequency range. Results show that ILs generate a quite complex frequency domain behavior, which can be described in the framework of FOEs. Furthermore, results on the time stability of the device under investigation are given.
基于细菌纤维素和离子液体的分数阶元件建模
本文在宽频率范围内建立了一种新型分数阶元件模型。FOE是基于一种绿色生物聚合物,即细菌纤维素(BC),注入离子液体(ILs)。在频域进行建模,提出了集总电路模型。该模型是对作者已经介绍的一个更简单的模型的一种改进,用于更窄的频率范围。结果表明,盲导产生了相当复杂的频域行为,这种行为可以用foe的框架来描述。此外,还给出了所研究装置的时间稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信