Lucy J Goudswaard, Laura J Corbin, Kate L Burley, Andrew Mumford, Parsa Akbari, Nicole Soranzo, Adam S Butterworth, Nicholas A Watkins, Dimitri J Pournaras, Jessica Harris, Nicholas J Timpson, Ingeborg Hers
{"title":"Higher body mass index raises immature platelet count: potential contribution to obesity-related thrombosis.","authors":"Lucy J Goudswaard, Laura J Corbin, Kate L Burley, Andrew Mumford, Parsa Akbari, Nicole Soranzo, Adam S Butterworth, Nicholas A Watkins, Dimitri J Pournaras, Jessica Harris, Nicholas J Timpson, Ingeborg Hers","doi":"10.1080/09537104.2021.2003317","DOIUrl":null,"url":null,"abstract":"<p><p>Higher body mass index (BMI) is a risk factor for thrombosis. Platelets are essential for hemostasis but contribute to thrombosis when activated pathologically. We hypothesized that higher BMI leads to changes in platelet characteristics, thereby increasing thrombotic risk. The effect of BMI on platelet traits (measured by Sysmex) was explored in 33 388 UK blood donors (INTERVAL study). Linear regression showed that higher BMI was positively associated with greater plateletcrit (PCT), platelet count (PLT), immature platelet count (IPC), and side fluorescence (SFL, a measure of mRNA content used to derive IPC). Mendelian randomization (MR), applied to estimate a causal effect with BMI proxied by a genetic risk score, provided causal estimates for a positive effect of BMI on both SFL and IPC, but there was little evidence for a causal effect of BMI on PCT or PLT. Follow-up analyses explored the functional relevance of platelet characteristics in a pre-operative cardiac cohort (COPTIC). Linear regression provided observational evidence for a positive association between IPC and agonist-induced whole blood platelet aggregation. Results indicate that higher BMI raises the number of immature platelets, which is associated with greater whole blood platelet aggregation in a cardiac cohort. Higher IPC could therefore contribute to obesity-related thrombosis.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":"33 6","pages":"869-878"},"PeriodicalIF":2.5000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2021.2003317","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Higher body mass index (BMI) is a risk factor for thrombosis. Platelets are essential for hemostasis but contribute to thrombosis when activated pathologically. We hypothesized that higher BMI leads to changes in platelet characteristics, thereby increasing thrombotic risk. The effect of BMI on platelet traits (measured by Sysmex) was explored in 33 388 UK blood donors (INTERVAL study). Linear regression showed that higher BMI was positively associated with greater plateletcrit (PCT), platelet count (PLT), immature platelet count (IPC), and side fluorescence (SFL, a measure of mRNA content used to derive IPC). Mendelian randomization (MR), applied to estimate a causal effect with BMI proxied by a genetic risk score, provided causal estimates for a positive effect of BMI on both SFL and IPC, but there was little evidence for a causal effect of BMI on PCT or PLT. Follow-up analyses explored the functional relevance of platelet characteristics in a pre-operative cardiac cohort (COPTIC). Linear regression provided observational evidence for a positive association between IPC and agonist-induced whole blood platelet aggregation. Results indicate that higher BMI raises the number of immature platelets, which is associated with greater whole blood platelet aggregation in a cardiac cohort. Higher IPC could therefore contribute to obesity-related thrombosis.
期刊介绍:
Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research.
Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods.
Research areas include:
Platelet function
Biochemistry
Signal transduction
Pharmacology and therapeutics
Interaction with other cells in the blood vessel wall
The contribution of platelets and platelet-derived products to health and disease
The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor.
Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.