{"title":"Molecular dynamics simulations suggest Thiosemicarbazones can bind p53 cancer mutant R175H","authors":"Tanushree Das, Chaitali Mukhopadhyay","doi":"10.1016/j.bbapap.2023.140903","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Cancer pathologies are associated with the unfolding and aggregation of most recurring mutations in the DNA<span><span> Binding Domain (DBD) of p53 that coordinate the destabilization of protein. Substitution at the 175th codon with arginine to histidine (R175H, a mutation of large to small side-chain amino acid) destabilizes the DBD by 3 kcal/mol and triggers breasts, lung cancer, etc. Stabilizing the p53 mutant by </span>small molecules offers an attractive drug-targeted anti-cancer therapy. The thiosemicarbazone (TSC) molecules NPC and DPT are known to act as zinc-metallochaperones to reactivate p53R175H. Here, a combination of </span></span>LESMD simulations<span> for 10 TSC conformations with a p53R175H receptor, single ligand-protein conformation MD, and ensemble docking with multiple p53R175H conformations observed during simulations is suggested to identify the potential binding site of the target protein in light of their importance for the direct TSC – p53R175H binding. NPC binds mutant R175H in the loop region L2-L3, forming pivotal hydrogen bonds with HIS175, pi‑sulfur bonds with TYR163, and pi-alkyl linkages with ARG174 and PRO190, all of which are contiguous to the zinc-binding native site on p53DBD. DPT, on the other hand, was primarily targeting alternative binding sites such as the loop-helix L1/H2 region and the S8 strand. The similar structural characteristics of TSC-bound p53R175H complexes with wild-type p53DBD are thought to be attributable to involved interactions that favour binding </span></span>free energy contributions of TSC ligands. Our findings may be useful in the identification of novel pockets with druggable properties.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer pathologies are associated with the unfolding and aggregation of most recurring mutations in the DNA Binding Domain (DBD) of p53 that coordinate the destabilization of protein. Substitution at the 175th codon with arginine to histidine (R175H, a mutation of large to small side-chain amino acid) destabilizes the DBD by 3 kcal/mol and triggers breasts, lung cancer, etc. Stabilizing the p53 mutant by small molecules offers an attractive drug-targeted anti-cancer therapy. The thiosemicarbazone (TSC) molecules NPC and DPT are known to act as zinc-metallochaperones to reactivate p53R175H. Here, a combination of LESMD simulations for 10 TSC conformations with a p53R175H receptor, single ligand-protein conformation MD, and ensemble docking with multiple p53R175H conformations observed during simulations is suggested to identify the potential binding site of the target protein in light of their importance for the direct TSC – p53R175H binding. NPC binds mutant R175H in the loop region L2-L3, forming pivotal hydrogen bonds with HIS175, pi‑sulfur bonds with TYR163, and pi-alkyl linkages with ARG174 and PRO190, all of which are contiguous to the zinc-binding native site on p53DBD. DPT, on the other hand, was primarily targeting alternative binding sites such as the loop-helix L1/H2 region and the S8 strand. The similar structural characteristics of TSC-bound p53R175H complexes with wild-type p53DBD are thought to be attributable to involved interactions that favour binding free energy contributions of TSC ligands. Our findings may be useful in the identification of novel pockets with druggable properties.