Density profile of a self-gravitating polytropic turbulent fluid in the context of ensembles of molecular clouds

S. Donkov, I. Stefanov, T. Veltchev, R. Klessen
{"title":"Density profile of a self-gravitating polytropic turbulent fluid in the context of ensembles of molecular clouds","authors":"S. Donkov, I. Stefanov, T. Veltchev, R. Klessen","doi":"10.1093/mnras/stab1572","DOIUrl":null,"url":null,"abstract":"We obtain an equation for the density profile in a self-gravitating polytropic spherically symmetric turbulent fluid with an equation of state $p_{\\rm gas}\\propto \\rho^\\Gamma$. This is done in the framework of ensembles of molecular clouds represented by single abstract objects as introduced by Donkov et al. (2017). The adopted physical picture is appropriate to describe the conditions near to the cloud core where the equation of state changes from isothermal (in the outer cloud layers) with $\\Gamma=1$ to one of `hard polytrope' with exponent $\\Gamma>1$. On the assumption of steady state, as the accreting matter passes through all spatial scales, we show that the total energy per unit mass is an invariant with respect to the fluid flow. The obtained equation reproduces the Bernoulli equation for the proposed model and describes the balance of the kinetic, thermal and gravitational energy of a fluid element. We propose as well a method to obtain approximate solutions in a power-law form which yields four solutions corresponding to different density profiles, polytropic exponents and energy balance equations for a fluid element. Only one of them, a density profile with slope $-3$ and polytropic exponent $\\Gamma=4/3$, matches with observations and numerical works. In particular, it yields a second power-law tail of the density distribution function in dense cloud regions.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/stab1572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We obtain an equation for the density profile in a self-gravitating polytropic spherically symmetric turbulent fluid with an equation of state $p_{\rm gas}\propto \rho^\Gamma$. This is done in the framework of ensembles of molecular clouds represented by single abstract objects as introduced by Donkov et al. (2017). The adopted physical picture is appropriate to describe the conditions near to the cloud core where the equation of state changes from isothermal (in the outer cloud layers) with $\Gamma=1$ to one of `hard polytrope' with exponent $\Gamma>1$. On the assumption of steady state, as the accreting matter passes through all spatial scales, we show that the total energy per unit mass is an invariant with respect to the fluid flow. The obtained equation reproduces the Bernoulli equation for the proposed model and describes the balance of the kinetic, thermal and gravitational energy of a fluid element. We propose as well a method to obtain approximate solutions in a power-law form which yields four solutions corresponding to different density profiles, polytropic exponents and energy balance equations for a fluid element. Only one of them, a density profile with slope $-3$ and polytropic exponent $\Gamma=4/3$, matches with observations and numerical works. In particular, it yields a second power-law tail of the density distribution function in dense cloud regions.
分子云集合中自重力多向湍流的密度分布
用状态方程$p_{\rm gas}\propto \rho^\Gamma$得到了自重力多向球对称湍流的密度分布方程。这是在Donkov等人(2017)引入的由单个抽象对象表示的分子云集成框架中完成的。所采用的物理图适合于描述云核附近的条件,在那里状态方程从具有$\Gamma=1$的等温(在外层云层中)变为具有$\Gamma>1$指数的“硬多相”之一。在稳态假设下,当吸积物质通过所有空间尺度时,我们证明了单位质量的总能量相对于流体流动是一个不变量。得到的方程再现了所提出模型的伯努利方程,并描述了流体单元的动能、热能和重力场的平衡。我们还提出了一种幂律形式的近似解的方法,该方法可以得到流体单元不同密度分布、多向指数和能量平衡方程对应的四种解。其中只有一个斜率为$-3$和多向指数$\Gamma=4/3$的密度剖面与观测和数值工作相匹配。特别是,它产生了密度分布函数在稠密云区域的第二个幂律尾部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信