Submanifolds immersed in a warped product with density

Pub Date : 2020-12-01 DOI:10.36045/j.bbms.200126
Jogli G. Araújo, H. Lima, Wallace F. Gomes, M. Velásquez
{"title":"Submanifolds immersed in a warped product with density","authors":"Jogli G. Araújo, H. Lima, Wallace F. Gomes, M. Velásquez","doi":"10.36045/j.bbms.200126","DOIUrl":null,"url":null,"abstract":"We study $n$-dimensional complete submanifolds immersed in a weighted warped product of the type $I\\times_fM^{n+p}_{\\varphi}$, whose warping function $f$ has convex logarithm and weight function $\\varphi$ does not depend on the real parameter $t\\in I$. Assuming the constancy of an appropriate support function involving the $\\varphi$-mean curvature vector field of such a submanifold $\\Sigma^n$ jointly with suitable constraints on the Bakry-Emery-Ricci tensor of $\\Sigma^n$, we prove that it must be contained in a slice of the ambient space. As applications, we obtain codimension reductions and Bernstein-type results for complete $\\varphi$-minimal bounded multi graphs constructed over the $n$-dimensional Gaussian space. Our approach is based on the weak Omori-Yau's generalized maximum principle and Liouville-type results for the drift Laplacian.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.200126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study $n$-dimensional complete submanifolds immersed in a weighted warped product of the type $I\times_fM^{n+p}_{\varphi}$, whose warping function $f$ has convex logarithm and weight function $\varphi$ does not depend on the real parameter $t\in I$. Assuming the constancy of an appropriate support function involving the $\varphi$-mean curvature vector field of such a submanifold $\Sigma^n$ jointly with suitable constraints on the Bakry-Emery-Ricci tensor of $\Sigma^n$, we prove that it must be contained in a slice of the ambient space. As applications, we obtain codimension reductions and Bernstein-type results for complete $\varphi$-minimal bounded multi graphs constructed over the $n$-dimensional Gaussian space. Our approach is based on the weak Omori-Yau's generalized maximum principle and Liouville-type results for the drift Laplacian.
分享
查看原文
子流形浸没在具有密度的翘曲产物中
我们研究了$n$维完全子流形浸没在$I\times_fM^{n+p}_{\varphi}$型的加权翘曲积中,其翘曲函数$f$具有凸对数且权函数$\varphi$不依赖于实参数$t\in I$。假设涉及子流形$\Sigma^n$的$\varphi$ -平均曲率向量场的适当支持函数的常数,并结合$\Sigma^n$的Bakry-Emery-Ricci张量的适当约束,证明了它必须包含在环境空间的一片中。作为应用,我们得到了在$n$维高斯空间上构造的完全$\varphi$ -极小有界多图的协维约简和bernstein型结果。我们的方法是基于弱Omori-Yau的广义极大值原理和漂移拉普拉斯算子的liouville型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信