Zachary C. Goddard, K. Wardlaw, Kyle Williams, A. Mazumdar
{"title":"Selecting Minimal Motion Primitive Libraries with Genetic Algorithms","authors":"Zachary C. Goddard, K. Wardlaw, Kyle Williams, A. Mazumdar","doi":"10.2514/1.i011188","DOIUrl":null,"url":null,"abstract":"Motion primitives allow for application of discrete search algorithms to rapidly produce trajectories in complex continuous space. The maneuver automaton (MA) provides an elegant formulation for creating a primitive library based on trims and maneuvers. However, performance is fundamentally limited by the contents of the primitive library. If the library is too sparse, performance can be poor in terms of path cost, whereas a library that is too large can increase run time. This work outlines new methods for using genetic algorithms to prune a primitive library. The proposed methods balance the path cost and planning time while maintaining the reachability of the MA. The genetic algorithm in this paper evaluates and mutates populations of motion primitive libraries to optimize both objectives. We illustrate the performance of these methods with a simulated study using a nonlinear medium-fidelity F-16 model. We optimize a library with the presented algorithm for obstacle-free navigation and a nap-of-the-Earth navigation task. In the obstacle-free navigation task, we show a tradeoff of a 10.16% higher planning cost for a 96.63% improvement in run time. In the nap-of-the-Earth task, we show a tradeoff of a 9.712% higher planning cost for a 92.06% improvement in run time.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"14 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.i011188","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Motion primitives allow for application of discrete search algorithms to rapidly produce trajectories in complex continuous space. The maneuver automaton (MA) provides an elegant formulation for creating a primitive library based on trims and maneuvers. However, performance is fundamentally limited by the contents of the primitive library. If the library is too sparse, performance can be poor in terms of path cost, whereas a library that is too large can increase run time. This work outlines new methods for using genetic algorithms to prune a primitive library. The proposed methods balance the path cost and planning time while maintaining the reachability of the MA. The genetic algorithm in this paper evaluates and mutates populations of motion primitive libraries to optimize both objectives. We illustrate the performance of these methods with a simulated study using a nonlinear medium-fidelity F-16 model. We optimize a library with the presented algorithm for obstacle-free navigation and a nap-of-the-Earth navigation task. In the obstacle-free navigation task, we show a tradeoff of a 10.16% higher planning cost for a 96.63% improvement in run time. In the nap-of-the-Earth task, we show a tradeoff of a 9.712% higher planning cost for a 92.06% improvement in run time.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.