Demin Nalic, A. Eichberger, Georg Hanzl, M. Fellendorf, Branko Rogic
{"title":"Development of a Co-Simulation Framework for Systematic Generation of Scenarios for Testing and Validation of Automated Driving Systems*","authors":"Demin Nalic, A. Eichberger, Georg Hanzl, M. Fellendorf, Branko Rogic","doi":"10.1109/ITSC.2019.8916839","DOIUrl":null,"url":null,"abstract":"Due to the sheer infinite number of test scenarios for test and validation of automated driving, stand-alone on-road testing of these systems is not reasonable, calling for the development of X-in-the-loop test methods. Recent advances in simulation methods are often based on simulation techniques where test scenarios are built considering stochastic traffic or deterministic predefined manoeuvres. To ensure realism, numerical robustness and usability of the test scenarios for both approaches, increasing effort must be invested in modelling the driving environment as well as vehicle and traffic dynamics. Especially traffic models are rarely realistically modelled in most current scenario generation and testing techniques. The goal of the present paper is to introduce a co-simulation framework for automated scenario generation with calibrated traffic flow models using measured data from an official test road in Austria and modelled in PTV Vissim. Combined with the Multi-Body-System vehicle development software IPG CarMaker, the presented co-simulation framework provides an approach for generation of realistic scenarios. This approach is demonstrated for a Highway Chauffeur function and allows future systematic testing.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"53 8 1","pages":"1895-1901"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8916839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Due to the sheer infinite number of test scenarios for test and validation of automated driving, stand-alone on-road testing of these systems is not reasonable, calling for the development of X-in-the-loop test methods. Recent advances in simulation methods are often based on simulation techniques where test scenarios are built considering stochastic traffic or deterministic predefined manoeuvres. To ensure realism, numerical robustness and usability of the test scenarios for both approaches, increasing effort must be invested in modelling the driving environment as well as vehicle and traffic dynamics. Especially traffic models are rarely realistically modelled in most current scenario generation and testing techniques. The goal of the present paper is to introduce a co-simulation framework for automated scenario generation with calibrated traffic flow models using measured data from an official test road in Austria and modelled in PTV Vissim. Combined with the Multi-Body-System vehicle development software IPG CarMaker, the presented co-simulation framework provides an approach for generation of realistic scenarios. This approach is demonstrated for a Highway Chauffeur function and allows future systematic testing.