Effect of Surface-Modified TiO2 and MgO Nanoparticles on Dielectric Permittivity and Breakdown Strength of PP Nanocomposites

Phichet Ketsamee, T. Andritsch, A. Vaughan
{"title":"Effect of Surface-Modified TiO2 and MgO Nanoparticles on Dielectric Permittivity and Breakdown Strength of PP Nanocomposites","authors":"Phichet Ketsamee, T. Andritsch, A. Vaughan","doi":"10.1109/CEIDP50766.2021.9705393","DOIUrl":null,"url":null,"abstract":"This work focuses on the effects of surface-modified nanofillers with various polar silane coupling agents on dielectric permittivity and dielectric breakdown strength of PP nanocomposites. Surface functionalization of nanofillers is implemented using an anhydrous technique with three different surfactants. These surface-modified nanofillers are mixed with polymers at fill grades of up to 5% by weight, prepared by a solution blending method. Thermogravimetric analysis confirms the presence of surface functionalization and the desired nanofiller amount. Dielectric permittivity values tend to rise as a function of filler content, and notably the dielectric loss of TiO2 nanocomposites is significantly increased below 0.1 Hz. MgO nanocomposites have overall lower dielectric losses than TiO2. AC breakdown of PP is significantly improved with modified TiO2 and MgO at 2.5%, while other fill grades have less pronounced effects. Ethoxy-modified nanoparticles with long chain hydrolysable group show overall the best dielectric properties.","PeriodicalId":6837,"journal":{"name":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"70 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP50766.2021.9705393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work focuses on the effects of surface-modified nanofillers with various polar silane coupling agents on dielectric permittivity and dielectric breakdown strength of PP nanocomposites. Surface functionalization of nanofillers is implemented using an anhydrous technique with three different surfactants. These surface-modified nanofillers are mixed with polymers at fill grades of up to 5% by weight, prepared by a solution blending method. Thermogravimetric analysis confirms the presence of surface functionalization and the desired nanofiller amount. Dielectric permittivity values tend to rise as a function of filler content, and notably the dielectric loss of TiO2 nanocomposites is significantly increased below 0.1 Hz. MgO nanocomposites have overall lower dielectric losses than TiO2. AC breakdown of PP is significantly improved with modified TiO2 and MgO at 2.5%, while other fill grades have less pronounced effects. Ethoxy-modified nanoparticles with long chain hydrolysable group show overall the best dielectric properties.
表面改性TiO2和MgO纳米颗粒对PP纳米复合材料介电常数和击穿强度的影响
研究了不同极性硅烷偶联剂表面改性纳米填料对PP纳米复合材料介电常数和介电击穿强度的影响。采用无水技术和三种不同的表面活性剂实现了纳米填料的表面功能化。这些表面改性的纳米填料与聚合物混合,填充等级高达5%的重量,通过溶液混合方法制备。热重分析证实了表面功能化和所需纳米填料量的存在。随着填料含量的增加,介电常数呈上升趋势,特别是在0.1 Hz以下,TiO2纳米复合材料的介电损耗显著增加。MgO纳米复合材料总体上比TiO2具有更低的介电损耗。2.5%的TiO2和MgO对PP的交流击穿有明显的改善,而其他填充等级的影响不太明显。具有长链水解基团的乙氧基修饰纳米粒子总体上表现出最好的介电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信