Investigating the Effect of Cooling Media on Hardness, Toughness, Coefficient of Friction, and Wear Rate of Mild Steel Heat Treated at Different Temperatures

M. Pita, L. Lebea
{"title":"Investigating the Effect of Cooling Media on Hardness, Toughness, Coefficient of Friction, and Wear Rate of Mild Steel Heat Treated at Different Temperatures","authors":"M. Pita,&nbsp;L. Lebea","doi":"10.1155/2022/3564875","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Mild steel is a common material used extensively in the manufacturing industry. This manuscript investigates the effect of cooling processes on the hardness, toughness, coefficient of friction, and wear rate of mild steel heat treated at different temperatures. The material was heat treated in a furnace at two different temperatures (500 and 900°C) and cooled by water, oil, and air. Microhardness and impact tests were conducted using ASTM E384 and ASTM E23-12C. For dry conditions, the tribology ASTM G99 test standard was used to determine the coefficient of friction and wear rate per sample. The results show that mild steel heat treated at 900°C and cooled with water increased the material’s hardness by 24% and toughness by 23.3% as compared to oil- and air-cooling media. The same heating temperature and water-cooling media produce the material with a low wear rate (3.223E-008).</p>\n </div>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"2022 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/3564875","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/3564875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mild steel is a common material used extensively in the manufacturing industry. This manuscript investigates the effect of cooling processes on the hardness, toughness, coefficient of friction, and wear rate of mild steel heat treated at different temperatures. The material was heat treated in a furnace at two different temperatures (500 and 900°C) and cooled by water, oil, and air. Microhardness and impact tests were conducted using ASTM E384 and ASTM E23-12C. For dry conditions, the tribology ASTM G99 test standard was used to determine the coefficient of friction and wear rate per sample. The results show that mild steel heat treated at 900°C and cooled with water increased the material’s hardness by 24% and toughness by 23.3% as compared to oil- and air-cooling media. The same heating temperature and water-cooling media produce the material with a low wear rate (3.223E-008).

Abstract Image

研究冷却介质对不同温度热处理的低碳钢硬度、韧性、摩擦系数和磨损率的影响
低碳钢是制造业中广泛使用的一种普通材料。本文研究了冷却工艺对经不同温度热处理的低碳钢的硬度、韧性、摩擦系数和磨损率的影响。该材料在两个不同温度(500和900°C)的炉中进行热处理,并用水、油和空气冷却。显微硬度和冲击试验采用ASTM E384和ASTM E23-12C进行。在干燥条件下,使用摩擦学ASTM G99测试标准来确定每个样品的摩擦系数和磨损率。结果表明,与油冷和空冷相比,经900℃热处理后的低碳钢,其硬度提高24%,韧性提高23.3%。在相同的加热温度和水冷介质下,材料的磨损率较低(3.223E-008)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信