{"title":"Width estimate and doubly warped product","authors":"Jintian Zhu","doi":"10.1090/tran/8263","DOIUrl":null,"url":null,"abstract":"In this paper, we give an affirmative answer to Gromov's conjecture ([3, Conjecture E]) by establishing an optimal Lipschitz lower bound for a class of smooth functions on orientable open $3$-manifolds with uniformly positive sectional curvatures. For rigidity we show that the universal covering of the given manifold must be $\\mathbf R^2\\times (-c,c)$ with some doubly warped product metric if the optimal bound is attained. This gives a characterization for doubly warped product metrics with positive constant curvature. As a corollary, we also obtain a focal radius estimate for immersed toruses in $3$-spheres with positive sectional curvatures.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
In this paper, we give an affirmative answer to Gromov's conjecture ([3, Conjecture E]) by establishing an optimal Lipschitz lower bound for a class of smooth functions on orientable open $3$-manifolds with uniformly positive sectional curvatures. For rigidity we show that the universal covering of the given manifold must be $\mathbf R^2\times (-c,c)$ with some doubly warped product metric if the optimal bound is attained. This gives a characterization for doubly warped product metrics with positive constant curvature. As a corollary, we also obtain a focal radius estimate for immersed toruses in $3$-spheres with positive sectional curvatures.