{"title":"Kinetics and Mechanism of Cationic Micelle/Flexible Nanoparticle Catalysis: A Review","authors":"Mohammad Niyaz Khan, I. I. Fagge","doi":"10.3184/146867818X15066862094905","DOIUrl":null,"url":null,"abstract":"The aqueous surfactant (Surf) solution at [Surf] > cmc (critical micelle concentration) contains flexible micelles/nanoparticles. These particles form a pseudophase of different shapes and sizes where the medium polarity decreases as the distance increases from the exterior region of the interface of the Surf/H2O particle towards its furthest interior region. Flexible nanoparticles (FNs) catalyse a variety of chemical and biochemical reactions. FN catalysis involves both positive catalysis (i.e. rate increase) and negative catalysis (i.e. rate decrease). This article describes the mechanistic details of these catalyses at the molecular level, which reveals the molecular origin of these catalyses. Effects of inert counterionic salts (MX) on the rates of bimolecular reactions (with one of the reactants as reactive counterion) in the presence of ionic FNs/micelles may result in either positive or negative catalysis. The kinetics of cationic FN (Surf/MX/H2O)-catalysed bimolecular reactions (with nonionic and anionic reactants) provide kinetic parameters which can be used to determine an ion exchange constant or the ratio of the binding constants of counterions.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"163 1","pages":"1 - 20"},"PeriodicalIF":2.1000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3184/146867818X15066862094905","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
The aqueous surfactant (Surf) solution at [Surf] > cmc (critical micelle concentration) contains flexible micelles/nanoparticles. These particles form a pseudophase of different shapes and sizes where the medium polarity decreases as the distance increases from the exterior region of the interface of the Surf/H2O particle towards its furthest interior region. Flexible nanoparticles (FNs) catalyse a variety of chemical and biochemical reactions. FN catalysis involves both positive catalysis (i.e. rate increase) and negative catalysis (i.e. rate decrease). This article describes the mechanistic details of these catalyses at the molecular level, which reveals the molecular origin of these catalyses. Effects of inert counterionic salts (MX) on the rates of bimolecular reactions (with one of the reactants as reactive counterion) in the presence of ionic FNs/micelles may result in either positive or negative catalysis. The kinetics of cationic FN (Surf/MX/H2O)-catalysed bimolecular reactions (with nonionic and anionic reactants) provide kinetic parameters which can be used to determine an ion exchange constant or the ratio of the binding constants of counterions.