On the Generalized Strongly Nil-Clean Property of Matrix Rings

IF 0.4 4区 数学 Q4 MATHEMATICS
A. Kostic, Z. Petrovic, Zoran S. Pucanovic, Maja Roslavcev
{"title":"On the Generalized Strongly Nil-Clean Property of Matrix Rings","authors":"A. Kostic, Z. Petrovic, Zoran S. Pucanovic, Maja Roslavcev","doi":"10.1142/s1005386721000481","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be an associative unital ring and not necessarily commutative. We analyze conditions under which every [Formula: see text] matrix [Formula: see text] over [Formula: see text] is expressible as a sum [Formula: see text] of (commuting) idempotent matrices [Formula: see text] and a nilpotent matrix [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000481","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be an associative unital ring and not necessarily commutative. We analyze conditions under which every [Formula: see text] matrix [Formula: see text] over [Formula: see text] is expressible as a sum [Formula: see text] of (commuting) idempotent matrices [Formula: see text] and a nilpotent matrix [Formula: see text].
关于矩阵环的广义强Nil-Clean性质
设[公式:见正文]是一个结合酉环,不一定是可交换的。我们分析了每个[公式:见文]矩阵[公式:见文]/[公式:见文]可表示为(交换)幂等矩阵[公式:见文]和幂零矩阵[公式:见文]的和[公式:见文]的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信