Fine multibubble analysis in the higher-dimensional Brezis–Nirenberg problem

IF 1.8 1区 数学 Q1 MATHEMATICS, APPLIED
Tobias König, P. Laurain
{"title":"Fine multibubble analysis in the higher-dimensional Brezis–Nirenberg problem","authors":"Tobias König, P. Laurain","doi":"10.4171/aihpc/95","DOIUrl":null,"url":null,"abstract":"For a bounded set $\\Omega \\subset \\mathbb R^N$ and a perturbation $V \\in C^1(\\overline{\\Omega})$, we analyze the concentration behavior of a blow-up sequence of positive solutions to \\[ -\\Delta u_\\epsilon + \\epsilon V = N(N-2) u_\\epsilon^\\frac{N+2}{N-2} \\] for dimensions $N \\geq 4$, which are non-critical in the sense of the Brezis--Nirenberg problem. For the general case of multiple concentration points, we prove that concentration points are isolated and characterize the vector of these points as a critical point of a suitable function derived from the Green's function of $-\\Delta$ on $\\Omega$. Moreover, we give the leading order expression of the concentration speed. This paper, with a recent one by the authors (arXiv:2208.12337) in dimension $N = 3$, gives a complete picture of blow-up phenomena in the Brezis-Nirenberg framework.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"69 7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/95","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

For a bounded set $\Omega \subset \mathbb R^N$ and a perturbation $V \in C^1(\overline{\Omega})$, we analyze the concentration behavior of a blow-up sequence of positive solutions to \[ -\Delta u_\epsilon + \epsilon V = N(N-2) u_\epsilon^\frac{N+2}{N-2} \] for dimensions $N \geq 4$, which are non-critical in the sense of the Brezis--Nirenberg problem. For the general case of multiple concentration points, we prove that concentration points are isolated and characterize the vector of these points as a critical point of a suitable function derived from the Green's function of $-\Delta$ on $\Omega$. Moreover, we give the leading order expression of the concentration speed. This paper, with a recent one by the authors (arXiv:2208.12337) in dimension $N = 3$, gives a complete picture of blow-up phenomena in the Brezis-Nirenberg framework.
高维Brezis-Nirenberg问题的精细多泡分析
对于一个有界集合$\Omega \subset \mathbb R^N$和一个扰动$V \in C^1(\overline{\Omega})$,我们分析了在布雷齐斯-尼伦伯格问题意义上是非临界的维度$N \geq 4$的\[ -\Delta u_\epsilon + \epsilon V = N(N-2) u_\epsilon^\frac{N+2}{N-2} \]正解的爆破序列的集中行为。对于多集中点的一般情况,我们证明了集中点是孤立的,并将这些点的向量表征为一个适当函数的临界点,该函数由$\Omega$上的Green函数$-\Delta$导出。并给出了浓缩速度的阶表达式。本文和作者最近在$N = 3$维上的一篇文章(arXiv:2208.12337),给出了布雷齐斯-尼伦堡框架中爆炸现象的完整图景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.30%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信