Scalable distributed storage for big scientific data

A. Kokoulin, A. Yuzhakov, D. Kiryanov
{"title":"Scalable distributed storage for big scientific data","authors":"A. Kokoulin, A. Yuzhakov, D. Kiryanov","doi":"10.1109/EICONRUS.2018.8317282","DOIUrl":null,"url":null,"abstract":"In this paper we describe the distributed storage structure with indexing techniques which can be applied in scientific Big Data centers. Basic principal of this project is distributed (N, K)-block storage. We develop the descent of LH∗RS especially for multidimensional data arrays using multiscaled representation of these arrays and efficient pre-processing algorithms. Dataset is decomposed into data blocks of several levels using the Wavelet transform. The required dataset of any requested scale and resolution is reconstructed online from the corresponding set of downloaded blocks on client's side. In order to accelerate data queries processing we can additionally use a pre-computed statistic results blocks and their hierarchical representation. The main advantage of this approach is that we can use these results together with original data or even separately to serve different data queries with both value and dimension subsetting conditions. This approach can reduce the resource costs of corresponding scientific problems.","PeriodicalId":6562,"journal":{"name":"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"7 1","pages":"1099-1103"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUS.2018.8317282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we describe the distributed storage structure with indexing techniques which can be applied in scientific Big Data centers. Basic principal of this project is distributed (N, K)-block storage. We develop the descent of LH∗RS especially for multidimensional data arrays using multiscaled representation of these arrays and efficient pre-processing algorithms. Dataset is decomposed into data blocks of several levels using the Wavelet transform. The required dataset of any requested scale and resolution is reconstructed online from the corresponding set of downloaded blocks on client's side. In order to accelerate data queries processing we can additionally use a pre-computed statistic results blocks and their hierarchical representation. The main advantage of this approach is that we can use these results together with original data or even separately to serve different data queries with both value and dimension subsetting conditions. This approach can reduce the resource costs of corresponding scientific problems.
用于大科学数据的可扩展分布式存储
本文描述了一种可以应用于科学大数据中心的分布式存储结构。本项目的基本原理是分布式(N, K)块存储。我们开发了LH * RS的下降,特别是对多维数据数组使用这些数组的多尺度表示和有效的预处理算法。利用小波变换将数据集分解为若干层次的数据块。从客户端下载的相应块集中在线重建所需的任何请求规模和分辨率的数据集。为了加速数据查询处理,我们还可以使用预先计算的统计结果块及其分层表示。这种方法的主要优点是,我们可以将这些结果与原始数据一起使用,甚至可以单独使用,以满足具有值和维度子集条件的不同数据查询。这种方法可以减少相应科学问题的资源成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信