A closer look at the multilinear cryptography using nilpotent groups

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Delaram Kahrobaei, A. Tortora, M. Tota
{"title":"A closer look at the multilinear cryptography using nilpotent groups","authors":"Delaram Kahrobaei, A. Tortora, M. Tota","doi":"10.1080/23799927.2021.2006314","DOIUrl":null,"url":null,"abstract":"In Kahrobaei et al. [Multilinear cryptography using nilpotent groups, Proceedings of Elementary Theory of Groups and Group Rings, and Related Topics conference. Conference held at Fairfield University and at the Graduate Center, CUNY, New York, NY, USA, November 1–2, 2018, De Gruyter, 2020, pp. 127–133] we generalized the definition of a multilinear map to arbitrary groups and introduced two multiparty key-exchange protocols using nilpotent groups. In this paper we have a closer look at the protocols and will address some incorrect cryptanalysis which has been proposed in Roman'kov [Discrete logarithm for nilpotent groups and cryptanalysis of polylinear cryptographic system, Prikl. Diskretn. Mat. Suppl. (12), (2019), pp. 154–160].","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2021.2006314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

In Kahrobaei et al. [Multilinear cryptography using nilpotent groups, Proceedings of Elementary Theory of Groups and Group Rings, and Related Topics conference. Conference held at Fairfield University and at the Graduate Center, CUNY, New York, NY, USA, November 1–2, 2018, De Gruyter, 2020, pp. 127–133] we generalized the definition of a multilinear map to arbitrary groups and introduced two multiparty key-exchange protocols using nilpotent groups. In this paper we have a closer look at the protocols and will address some incorrect cryptanalysis which has been proposed in Roman'kov [Discrete logarithm for nilpotent groups and cryptanalysis of polylinear cryptographic system, Prikl. Diskretn. Mat. Suppl. (12), (2019), pp. 154–160].
使用幂零群的多线性密码学
Kahrobaei et al.[利用幂零群的多线性密码学],群与群环的基本理论论文集,及相关主题会议。在费尔菲尔德大学和研究生中心举行的会议,纽约,NY, USA, 11月1-2日,2018,De Gruyter, 2020, pp. 127-133]我们将多线性映射的定义推广到任意群,并引入了两个使用幂零群的多方密钥交换协议。在本文中,我们仔细研究了这些协议,并将解决在Roman'kov[幂零群的离散对数]和多线性密码系统的密码分析中提出的一些错误的密码分析。Diskretn。垫,增刊。(12), (2019), pp. 154-160]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信