Error Analysis of Some Operations Involved in the Cooley-Tukey Fast Fourier Transform

N. Brisebarre, Mioara Joldes, J. Muller, Ana-Maria Naneş, Joris Picot
{"title":"Error Analysis of Some Operations Involved in the Cooley-Tukey Fast Fourier Transform","authors":"N. Brisebarre, Mioara Joldes, J. Muller, Ana-Maria Naneş, Joris Picot","doi":"10.1145/3368619","DOIUrl":null,"url":null,"abstract":"We are interested in obtaining error bounds for the classical Cooley-Tukey fast Fourier transform algorithm in floating-point arithmetic, for the 2-norm as well as for the infinity norm. For that purpose, we also give some results on the relative error of the complex multiplication by a root of unity, and on the largest value that can take the real or imaginary part of one term of the fast Fourier transform of a vector x, assuming that all terms of x have real and imaginary parts less than some value b.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"65 1","pages":"1 - 27"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3368619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We are interested in obtaining error bounds for the classical Cooley-Tukey fast Fourier transform algorithm in floating-point arithmetic, for the 2-norm as well as for the infinity norm. For that purpose, we also give some results on the relative error of the complex multiplication by a root of unity, and on the largest value that can take the real or imaginary part of one term of the fast Fourier transform of a vector x, assuming that all terms of x have real and imaginary parts less than some value b.
Cooley-Tukey快速傅里叶变换中一些运算的误差分析
我们感兴趣的是获得经典的Cooley-Tukey快速傅立叶变换算法在浮点运算中的误差界,对于2范数以及对于无穷范数。为了这个目的,我们也给出了一些结果关于复数乘以一个单位根的相对误差,以及关于向量x的快速傅里叶变换的一项的实部或虚部的最大值,假设x的所有项的实部和虚部都小于某个值b。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信