The Impacts of Membrane Pinholes on Performance and Hydrogen Crossover in PEM Water Electrolysis

Chang Liu, J. Wrubel, Elliot Padgett, G. Bender
{"title":"The Impacts of Membrane Pinholes on Performance and Hydrogen Crossover in PEM Water Electrolysis","authors":"Chang Liu, J. Wrubel, Elliot Padgett, G. Bender","doi":"10.1149/ma2022-02441664mtgabs","DOIUrl":null,"url":null,"abstract":"Polymer electrolyte membrane (PEM) water electrolysis is a promising energy storage technology to produce highly pure hydrogen with high efficiency 1. However, to implement it on a larger scale, it is essential to understand the effects of defects and the required tolerances and quality controls during manufacturing or subsequent handling. Inhomogeneities in membrane electrode assembly (MEA) component materials caused by the manufacturing process or subsequent handling can lead to performance loss and failure 2. Defects such as membrane pinholes, cuts, tears, abrasions, or perforations can all potentially impact MEA performance. In terms of impact, a loss of integrity of the membrane can allow bulk gas transport (crossover) and/or electrical shorting 3.\n In particular, hydrogen crossover is a crucial issue for PEM water electrolysis in terms of safe operation and efficiency losses, especially at increased hydrogen pressures. Crossover reduces the overall efficiency of the system and poses flammability hazards under certain conditions 4. Pinholes that form during the manufacturing process or during operation through degradation of the membrane lead to dramatically increased hydrogen crossover.\n In this study, the impacts of membrane pinholes on the performance and hydrogen crossover of PEM water electrolyzer cells are studied. Pinholes with different sizes are artificially introduced to the MEA to investigate the effects on the initial cell performance and hydrogen crossover rate under various backpressure and current density conditions.\n \n Reference \n \n \n Liu, C.; Shviro, M.; Gago, A. S.; Zaccarine, S. F.; Bender, G.; Gazdzicki, P.; Morawietz, T.; Biswas, I.; Rasinski, M.; Everwand, A., Exploring the Interface of Skin‐Layered Titanium Fibers for Electrochemical Water Splitting. Adv Energy Mater \n 2021, \n 11 (8), 2002926.\n \n \n Ulsh, M.; DeBari, A.; Berliner, J. M.; Zenyuk, I. V.; Rupnowski, P.; Matvichuk, L.; Weber, A. Z.; Bender, G., The development of a through-plane reactive excitation technique for detection of pinholes in membrane-containing MEA sub-assemblies. Int J Hydrogen Energ \n 2019, \n 44 (16), 8533-8547.\n \n \n Phillips, A.; Ulsh, M.; Mackay, J.; Harris, T.; Shrivastava, N.; Chatterjee, A.; Porter, J.; Bender, G. J. F. C., The effect of membrane casting irregularities on initial fuel cell performance. 2020, \n 20 (1), 60-69.\n \n \n Martin, A.; Trinke, P.; Stähler, M.; Stähler, A.; Scheepers, F.; Bensmann, B.; Carmo, M.; Lehnert, W.; Hanke-Rauschenbach, R. J. J. o. T. E. S., The Effect of Cell Compression and Cathode Pressure on Hydrogen Crossover in PEM Water Electrolysis. 2022, \n 169 (1), 014502.\n \n \n","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2022-02441664mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer electrolyte membrane (PEM) water electrolysis is a promising energy storage technology to produce highly pure hydrogen with high efficiency 1. However, to implement it on a larger scale, it is essential to understand the effects of defects and the required tolerances and quality controls during manufacturing or subsequent handling. Inhomogeneities in membrane electrode assembly (MEA) component materials caused by the manufacturing process or subsequent handling can lead to performance loss and failure 2. Defects such as membrane pinholes, cuts, tears, abrasions, or perforations can all potentially impact MEA performance. In terms of impact, a loss of integrity of the membrane can allow bulk gas transport (crossover) and/or electrical shorting 3. In particular, hydrogen crossover is a crucial issue for PEM water electrolysis in terms of safe operation and efficiency losses, especially at increased hydrogen pressures. Crossover reduces the overall efficiency of the system and poses flammability hazards under certain conditions 4. Pinholes that form during the manufacturing process or during operation through degradation of the membrane lead to dramatically increased hydrogen crossover. In this study, the impacts of membrane pinholes on the performance and hydrogen crossover of PEM water electrolyzer cells are studied. Pinholes with different sizes are artificially introduced to the MEA to investigate the effects on the initial cell performance and hydrogen crossover rate under various backpressure and current density conditions. Reference Liu, C.; Shviro, M.; Gago, A. S.; Zaccarine, S. F.; Bender, G.; Gazdzicki, P.; Morawietz, T.; Biswas, I.; Rasinski, M.; Everwand, A., Exploring the Interface of Skin‐Layered Titanium Fibers for Electrochemical Water Splitting. Adv Energy Mater 2021, 11 (8), 2002926. Ulsh, M.; DeBari, A.; Berliner, J. M.; Zenyuk, I. V.; Rupnowski, P.; Matvichuk, L.; Weber, A. Z.; Bender, G., The development of a through-plane reactive excitation technique for detection of pinholes in membrane-containing MEA sub-assemblies. Int J Hydrogen Energ 2019, 44 (16), 8533-8547. Phillips, A.; Ulsh, M.; Mackay, J.; Harris, T.; Shrivastava, N.; Chatterjee, A.; Porter, J.; Bender, G. J. F. C., The effect of membrane casting irregularities on initial fuel cell performance. 2020, 20 (1), 60-69. Martin, A.; Trinke, P.; Stähler, M.; Stähler, A.; Scheepers, F.; Bensmann, B.; Carmo, M.; Lehnert, W.; Hanke-Rauschenbach, R. J. J. o. T. E. S., The Effect of Cell Compression and Cathode Pressure on Hydrogen Crossover in PEM Water Electrolysis. 2022, 169 (1), 014502.
膜针孔对PEM水电解性能及氢交换的影响
聚合物电解质膜(PEM)水电解是一种极具发展前景的高效高纯氢储能技术。然而,要在更大的范围内实施它,了解缺陷的影响以及在制造或后续处理过程中所需的公差和质量控制是必不可少的。由制造过程或后续处理引起的膜电极组件(MEA)组件材料的不均匀性可能导致性能损失和失效2。诸如膜针孔、割伤、撕裂、磨损或穿孔等缺陷都可能影响MEA的性能。就影响而言,膜完整性的丧失可能导致大量气体传输(交叉)和/或电气短路。特别是在氢气压力增加的情况下,氢气交叉是PEM水电解过程中安全操作和效率损失的关键问题。跨界降低了系统的整体效率,并在某些条件下存在可燃性危险。在制造过程中或在操作过程中,由于膜的降解而形成的针孔导致氢交叉急剧增加。本文研究了膜针孔对PEM水电解槽性能和氢气交叉的影响。在MEA中人为引入不同尺寸的针孔,研究不同背压和电流密度条件下对电池初始性能和氢气交叉率的影响。参考文献:刘翀;Shviro m;加戈,a.s.;扎卡林,s.f.;本德,g;Gazdzicki p;Morawietz t;Biswas i;Rasinski m;电化学水分解的表面层状钛纤维界面研究。能源工程学报,2011,31(8),2002926。Ulsh m;DeBari, a;伯林纳,j.m.;泽纽克,i.v.;Rupnowski p;Matvichuk l;韦伯,a.z.;在含膜MEA子组件中检测针孔的一种通过平面反应激发技术的发展。生物质化学工程学报,2019,35(6):559 - 563。菲利普斯,a;Ulsh m;麦凯,j .;哈里斯,t;Shrivastava:;Chatterjee, a;波特,j .;陈志强,《膜铸造工艺对燃料电池性能的影响》。2020, 20(1), 60-69。马丁,a;Trinke p;斯特尔,m;斯特尔,a;Scheepers f;Bensmann b;•m .;莱纳特,w;张建军,张建军,张建军,等。阴极压力对PEM电解过程中氢交换的影响。工业水处理,2012,32(1):1 - 4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信