{"title":"The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation","authors":"Hongzi Cong , Xiaoping Yuan","doi":"10.1016/j.anihpc.2020.09.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper we prove the existence and linear stability of full dimensional tori with subexponential decay for 1-dimensional nonlinear wave equation with external parameters, which relies on the method of KAM theory and the idea proposed by Bourgain </span><span>[9]</span>.</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 3","pages":"Pages 759-786"},"PeriodicalIF":1.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.09.006","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300925","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper we prove the existence and linear stability of full dimensional tori with subexponential decay for 1-dimensional nonlinear wave equation with external parameters, which relies on the method of KAM theory and the idea proposed by Bourgain [9].
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.