The Least Eigenvalue of Unicyclic Graphs with Application to Spectral Spread

IF 0.4 4区 数学 Q4 MATHEMATICS
Ji-Ming Guo, Gege Zhang, Zhiwen Wang, Pan-Pan Tong
{"title":"The Least Eigenvalue of Unicyclic Graphs with Application to Spectral Spread","authors":"Ji-Ming Guo, Gege Zhang, Zhiwen Wang, Pan-Pan Tong","doi":"10.1142/s1005386722000219","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be the set of connected unicyclic graphs of order [Formula: see text] and girth [Formula: see text]. Let [Formula: see text] be obtained from a cycle [Formula: see text] (in an anticlockwise direction) by identifying [Formula: see text] with the root of a rooted tree [Formula: see text] of order [Formula: see text] for each [Formula: see text], where [Formula: see text] and [Formula: see text]. In this note, the graph with the minimal least eigenvalue (and the graph with maximal spread) in [Formula: see text] is determined.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000219","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be the set of connected unicyclic graphs of order [Formula: see text] and girth [Formula: see text]. Let [Formula: see text] be obtained from a cycle [Formula: see text] (in an anticlockwise direction) by identifying [Formula: see text] with the root of a rooted tree [Formula: see text] of order [Formula: see text] for each [Formula: see text], where [Formula: see text] and [Formula: see text]. In this note, the graph with the minimal least eigenvalue (and the graph with maximal spread) in [Formula: see text] is determined.
单环图的最小特征值及其在谱扩展中的应用
设[公式:见文]为有阶[公式:见文]和周长[公式:见文]的连通单环图的集合。通过将[公式:见文]与有根树[公式:见文]的顺序[公式:见文](公式:见文)(公式:见文)(公式:见文)(其中[公式:见文]和[公式:见文])的根(公式:见文)(逆时针方向)从一个循环[公式:见文]中得到[公式:见文]。在本文中,确定[公式:见文]中具有最小特征值的图(以及具有最大扩展的图)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信