Global Existence and Decay Properties of Solutions for Coupled Degenerate Dissipative Hyperbolic Systems of Kirchhoff Type

Pub Date : 2014-08-01 DOI:10.1619/FESI.57.319
K. Ono
{"title":"Global Existence and Decay Properties of Solutions for Coupled Degenerate Dissipative Hyperbolic Systems of Kirchhoff Type","authors":"K. Ono","doi":"10.1619/FESI.57.319","DOIUrl":null,"url":null,"abstract":"Consider the initial-boundary value problem for coupled degenerate dissipative hyperbolic systems of Kirchhoff type: rho u(tt) - (parallel to del u(t)parallel to(2) + parallel to del v(t)parallel to(2))(gamma)Delta u + u(t) = 0, rho v(tt) - (parallel to del u(t)parallel to(2) + parallel to del v(t)parallel to 2)(gamma)Delta v + v(t) = 0, with homogeneous Dirichlet boundary condition and rho > 0 and gamma > 0. When either the coefficient rho or the initial data are appropriately small, we prove the global existence theorem by using several identities and the energy decay. Moreover, under the same assumption for rho and the initial data, we derive the decay estimates of the solutions and their second order derivatives.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/FESI.57.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the initial-boundary value problem for coupled degenerate dissipative hyperbolic systems of Kirchhoff type: rho u(tt) - (parallel to del u(t)parallel to(2) + parallel to del v(t)parallel to(2))(gamma)Delta u + u(t) = 0, rho v(tt) - (parallel to del u(t)parallel to(2) + parallel to del v(t)parallel to 2)(gamma)Delta v + v(t) = 0, with homogeneous Dirichlet boundary condition and rho > 0 and gamma > 0. When either the coefficient rho or the initial data are appropriately small, we prove the global existence theorem by using several identities and the energy decay. Moreover, under the same assumption for rho and the initial data, we derive the decay estimates of the solutions and their second order derivatives.
分享
查看原文
Kirchhoff型耦合简并耗散双曲型系统解的整体存在性和衰减性质
考虑Kirchhoff型耦合简并耗散双曲系统的初边值问题:rho u(tt) -(平行于u(t)平行于(2)+平行于v(t)平行于(2))(gamma) δ u + u(t) = 0, rho v(tt) -(平行于u(t)平行于(2)+平行于v(t)平行于2)(gamma) δ v + v(t) = 0,具有齐次Dirichlet边界条件且rho > 0且gamma > 0。当系数或初始数据都足够小时,我们利用几个恒等式和能量衰减证明了全局存在性定理。此外,在对rho和初始数据的相同假设下,我们导出了解及其二阶导数的衰减估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信