Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs

Heysem Kaya, Furkan Gürpinar, A. A. Salah
{"title":"Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs","authors":"Heysem Kaya, Furkan Gürpinar, A. A. Salah","doi":"10.1109/CVPRW.2017.210","DOIUrl":null,"url":null,"abstract":"We describe an end-to-end system for explainable automatic job candidate screening from video CVs. In this application, audio, face and scene features are first computed from an input video CV, using rich feature sets. These multiple modalities are fed into modality-specific regressors to predict apparent personality traits and a variable that predicts whether the subject will be invited to the interview. The base learners are stacked to an ensemble of decision trees to produce the outputs of the quantitative stage, and a single decision tree, combined with a rule-based algorithm produces interview decision explanations based on the quantitative results. The proposed system in this work ranks first in both quantitative and qualitative stages of the CVPR 2017 ChaLearn Job Candidate Screening Coopetition.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"28 1","pages":"1651-1659"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

We describe an end-to-end system for explainable automatic job candidate screening from video CVs. In this application, audio, face and scene features are first computed from an input video CV, using rich feature sets. These multiple modalities are fed into modality-specific regressors to predict apparent personality traits and a variable that predicts whether the subject will be invited to the interview. The base learners are stacked to an ensemble of decision trees to produce the outputs of the quantitative stage, and a single decision tree, combined with a rule-based algorithm produces interview decision explanations based on the quantitative results. The proposed system in this work ranks first in both quantitative and qualitative stages of the CVPR 2017 ChaLearn Job Candidate Screening Coopetition.
基于多模态分数融合和决策树的视频简历可解释性自动筛选
我们描述了一个端到端的系统,用于从视频简历中自动筛选可解释的求职者。在这个应用程序中,音频、人脸和场景特征首先从输入视频CV中计算出来,使用丰富的特征集。这些多重模态被输入到模态特定的回归器中,以预测明显的人格特征,并输入一个变量来预测受试者是否会被邀请参加面试。基础学习者被堆叠到一组决策树中以产生定量阶段的输出,单个决策树与基于规则的算法相结合,根据定量结果产生面试决策解释。本工作提出的系统在CVPR 2017年ChaLearn职位候选人筛选合作中,在定量和定性两个阶段均排名第一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信