Fine-Grained Named Entity Classification with Wikipedia Article Vectors

Masatoshi Suzuki, Koji Matsuda, S. Sekine, Naoaki Okazaki, Kentaro Inui
{"title":"Fine-Grained Named Entity Classification with Wikipedia Article Vectors","authors":"Masatoshi Suzuki, Koji Matsuda, S. Sekine, Naoaki Okazaki, Kentaro Inui","doi":"10.1109/WI.2016.0080","DOIUrl":null,"url":null,"abstract":"This paper addresses the task of assigning multiple labels of fine-grained named entity (NE) types to Wikipedia articles. To address the sparseness of the input feature space, which is salient particularly in fine-grained type classification, we propose to learn article vectors (i.e. entity embeddings) from hypertext structure of Wikipedia using a Skip-gram model and incorporate them into the input feature set. To conduct large-scale practical experiments, we created a new dataset containing over 22,000 manually labeled instances. The results of our experiments show that our idea gained statistically significant improvements in classification results.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"1 1","pages":"483-486"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper addresses the task of assigning multiple labels of fine-grained named entity (NE) types to Wikipedia articles. To address the sparseness of the input feature space, which is salient particularly in fine-grained type classification, we propose to learn article vectors (i.e. entity embeddings) from hypertext structure of Wikipedia using a Skip-gram model and incorporate them into the input feature set. To conduct large-scale practical experiments, we created a new dataset containing over 22,000 manually labeled instances. The results of our experiments show that our idea gained statistically significant improvements in classification results.
细粒度命名实体分类与维基百科文章向量
本文解决了为维基百科文章分配多个细粒度命名实体(NE)类型标签的任务。为了解决输入特征空间的稀疏性,这在细粒度类型分类中尤为突出,我们建议使用Skip-gram模型从维基百科的超文本结构中学习文章向量(即实体嵌入),并将其合并到输入特征集中。为了进行大规模的实际实验,我们创建了一个包含超过22,000个手动标记实例的新数据集。实验结果表明,我们的想法在分类结果上得到了统计学上显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信