Shape preserving properties of $ (\mathfrak{p}, \mathfrak{q}) $ Bernstein Bèzier curves and corresponding results over $ [a, b] $

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
V. Sharma, Asif Khan, M. Mursaleen
{"title":"Shape preserving properties of $ (\\mathfrak{p}, \\mathfrak{q}) $ Bernstein Bèzier curves and corresponding results over $ [a, b] $","authors":"V. Sharma, Asif Khan, M. Mursaleen","doi":"10.3934/mfc.2022041","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This article deals with shape preserving and local approximation properties of post-quantum Bernstein bases and operators over arbitrary interval <inline-formula><tex-math id=\"M3\">\\begin{document}$ [a, b] $\\end{document}</tex-math></inline-formula> defined by Khan and Sharma (Iran J Sci Technol Trans Sci (2021)). The properties for <inline-formula><tex-math id=\"M4\">\\begin{document}$ (\\mathfrak{p}, \\mathfrak{q}) $\\end{document}</tex-math></inline-formula>-Bernstein bases and Bézier curves over <inline-formula><tex-math id=\"M5\">\\begin{document}$ [a, b] $\\end{document}</tex-math></inline-formula> have been given. A de Casteljau algorithm has been discussed. Further we obtain the rate of convergence for <inline-formula><tex-math id=\"M6\">\\begin{document}$ (\\mathfrak{p}, \\mathfrak{q}) $\\end{document}</tex-math></inline-formula>-Bernstein operators over <inline-formula><tex-math id=\"M7\">\\begin{document}$ [a, b] $\\end{document}</tex-math></inline-formula> in terms of Lipschitz type space having two parameters and Lipschitz maximal functions.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"97 1","pages":"691-703"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This article deals with shape preserving and local approximation properties of post-quantum Bernstein bases and operators over arbitrary interval \begin{document}$ [a, b] $\end{document} defined by Khan and Sharma (Iran J Sci Technol Trans Sci (2021)). The properties for \begin{document}$ (\mathfrak{p}, \mathfrak{q}) $\end{document}-Bernstein bases and Bézier curves over \begin{document}$ [a, b] $\end{document} have been given. A de Casteljau algorithm has been discussed. Further we obtain the rate of convergence for \begin{document}$ (\mathfrak{p}, \mathfrak{q}) $\end{document}-Bernstein operators over \begin{document}$ [a, b] $\end{document} in terms of Lipschitz type space having two parameters and Lipschitz maximal functions.

$ (\mathfrak{p}, \mathfrak{q}) $ Bernstein b曲线的保形性质及其在$ [a, b] $上的结果
This article deals with shape preserving and local approximation properties of post-quantum Bernstein bases and operators over arbitrary interval \begin{document}$ [a, b] $\end{document} defined by Khan and Sharma (Iran J Sci Technol Trans Sci (2021)). The properties for \begin{document}$ (\mathfrak{p}, \mathfrak{q}) $\end{document}-Bernstein bases and Bézier curves over \begin{document}$ [a, b] $\end{document} have been given. A de Casteljau algorithm has been discussed. Further we obtain the rate of convergence for \begin{document}$ (\mathfrak{p}, \mathfrak{q}) $\end{document}-Bernstein operators over \begin{document}$ [a, b] $\end{document} in terms of Lipschitz type space having two parameters and Lipschitz maximal functions.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信