{"title":"On Reductions of Finitely Generated Ideals in Integral Domains","authors":"S. Oda","doi":"10.5036/MJIU.30.21","DOIUrl":null,"url":null,"abstract":"√(f1,...,fd+1)R[X] [3,p.124]. The question is whether an ideal (f1,...,fd+1) R[X] can be chosen as a reduction of I. We only know the following case of affine domains, which was developed by G. Lyubeznik [4]: Let R be an n-dimensional affine domain over an infinite field k and let I be an ideal of R. Then I has a reduction generated by n+1 elements. He also posed the following conjecture: Let A be a Noetherian ring of dimension n -1 such that the residue field of every maximal ideal of A is infinite. Let I be an ideal of A or A[X] (a polynomial ring. Then I has a reduction generated by n elements. Our objective of this paper is to prove Lyubeznik's conjecture for a Noetherian domain containing an algebraically closed field: Let A be a Noetherian domain containing an algebraically closed field k and let I be an ideal of a polynomial ring A[X] such that I contains a monic","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"94 1","pages":"21-32"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.30.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
√(f1,...,fd+1)R[X] [3,p.124]. The question is whether an ideal (f1,...,fd+1) R[X] can be chosen as a reduction of I. We only know the following case of affine domains, which was developed by G. Lyubeznik [4]: Let R be an n-dimensional affine domain over an infinite field k and let I be an ideal of R. Then I has a reduction generated by n+1 elements. He also posed the following conjecture: Let A be a Noetherian ring of dimension n -1 such that the residue field of every maximal ideal of A is infinite. Let I be an ideal of A or A[X] (a polynomial ring. Then I has a reduction generated by n elements. Our objective of this paper is to prove Lyubeznik's conjecture for a Noetherian domain containing an algebraically closed field: Let A be a Noetherian domain containing an algebraically closed field k and let I be an ideal of a polynomial ring A[X] such that I contains a monic