Improvement of Rheological and Filtration Properties of Water-Based Drilling Fluids Using Bentonite-Hydrothermal Carbon Nanocomposites Under the Ultra-High Temperature and High Pressure Conditions
H. Zhong, G. Ying, Z. Qiu, Jie Feng, LI Wenlei, Yuan Wan, Yubin Zhang
{"title":"Improvement of Rheological and Filtration Properties of Water-Based Drilling Fluids Using Bentonite-Hydrothermal Carbon Nanocomposites Under the Ultra-High Temperature and High Pressure Conditions","authors":"H. Zhong, G. Ying, Z. Qiu, Jie Feng, LI Wenlei, Yuan Wan, Yubin Zhang","doi":"10.2118/205539-ms","DOIUrl":null,"url":null,"abstract":"\n With the depletion of the conventional shallow oil/gas reservoirs and the increasing demand for oil and gas, deep drilling become more and more essential to extract the oil/gas from deep formations. However, deep drilling faces many complex challenges. One of the complexities is the degradation of polymers and flocculation of bentonite particles, leading to hardly control the rheological and filtration properties of water-based drilling fluids, especially under ultra-high temperature and high pressure (HTHP) conditions. Therefore, an experimental investigation is performed to study how bentonite-hydrothermal carbon nanocomposites will influence the rheological and filtration properties of water-based drilling fluids under ultra-HTHP conditions.\n Bentonite-hydrothermal carbon nanocomposites are proposed as non-polymer additives to solve the ultra-HTHP challenge in water-based drilling fluid. The nanocomposites are synthesized by facile hydrothermal reaction, in which biomass starch and sodium bentonite are used as the precursor and template, respectively. In this study, the effect of the nanocomposites on the rheology and filtration properties of water-based drilling fluid are investigated before and after hot rolling at 220 °C and 240 °C.\n The structure characterization indicates that carbon nanospheres can successfully deposit on the bentonite surface after hydrothermal reaction and finally form as nanocomposites. The elemental carbon content, zeta potential and particle size distribution of the nanocomposites could be adjusted according to the reaction conditions. After thermal aging at 220 °C and 240 °C, addition of nanocomposites can improve the rheological properties significantly where a stable and minor change of rheological properties is observed, which is desirable for ultra-HTHP drilling. Regarding filtration control, after adding 1.0 wt% nanocomposite materials, the filtration loss is reduced by 41% and 44% respectively after aging at 220 °C and 240 °C, which is better than the conventional natural materials that lose their function in this case. The identification of microstructure shows that the hydrothermal reaction endows nanocomposites with a unique surface morphology and an improved surface charge density. The interaction between nanocomposites and bentonite particles forms a rigid connection network, which is the main mechanism to facilitate effective rheology and filtration control under ultra-HTHP conditions.\n The green and facile synthetic routes and environmentally friendly features of the nanocomposites, coupled with the excellent performance in ultra-HTHP rheology and filtration control, indicate that the nanocomposites have a high promise for water-based drilling fluid in ultra-HTHP drilling. Moreover, it provides a new way to design high performance additives with high temperature stability.","PeriodicalId":10970,"journal":{"name":"Day 1 Tue, October 12, 2021","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 12, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205539-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the depletion of the conventional shallow oil/gas reservoirs and the increasing demand for oil and gas, deep drilling become more and more essential to extract the oil/gas from deep formations. However, deep drilling faces many complex challenges. One of the complexities is the degradation of polymers and flocculation of bentonite particles, leading to hardly control the rheological and filtration properties of water-based drilling fluids, especially under ultra-high temperature and high pressure (HTHP) conditions. Therefore, an experimental investigation is performed to study how bentonite-hydrothermal carbon nanocomposites will influence the rheological and filtration properties of water-based drilling fluids under ultra-HTHP conditions.
Bentonite-hydrothermal carbon nanocomposites are proposed as non-polymer additives to solve the ultra-HTHP challenge in water-based drilling fluid. The nanocomposites are synthesized by facile hydrothermal reaction, in which biomass starch and sodium bentonite are used as the precursor and template, respectively. In this study, the effect of the nanocomposites on the rheology and filtration properties of water-based drilling fluid are investigated before and after hot rolling at 220 °C and 240 °C.
The structure characterization indicates that carbon nanospheres can successfully deposit on the bentonite surface after hydrothermal reaction and finally form as nanocomposites. The elemental carbon content, zeta potential and particle size distribution of the nanocomposites could be adjusted according to the reaction conditions. After thermal aging at 220 °C and 240 °C, addition of nanocomposites can improve the rheological properties significantly where a stable and minor change of rheological properties is observed, which is desirable for ultra-HTHP drilling. Regarding filtration control, after adding 1.0 wt% nanocomposite materials, the filtration loss is reduced by 41% and 44% respectively after aging at 220 °C and 240 °C, which is better than the conventional natural materials that lose their function in this case. The identification of microstructure shows that the hydrothermal reaction endows nanocomposites with a unique surface morphology and an improved surface charge density. The interaction between nanocomposites and bentonite particles forms a rigid connection network, which is the main mechanism to facilitate effective rheology and filtration control under ultra-HTHP conditions.
The green and facile synthetic routes and environmentally friendly features of the nanocomposites, coupled with the excellent performance in ultra-HTHP rheology and filtration control, indicate that the nanocomposites have a high promise for water-based drilling fluid in ultra-HTHP drilling. Moreover, it provides a new way to design high performance additives with high temperature stability.