Multiple positive solutions for a nonlinear Choquard equation with nonhomogeneous

Haiyang Li, Chunlei Tang, Xing-Ping Wu
{"title":"Multiple positive solutions for a nonlinear Choquard equation with nonhomogeneous","authors":"Haiyang Li, Chunlei Tang, Xing-Ping Wu","doi":"10.7153/dea-2017-09-38","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of multiple positive solutions for the following equation: −Δu+u = (Kα (x)∗ |u|p)|u|p−2u +λ f (x), x ∈ R , where N 3, α ∈ (0,N), p ∈ (1+ α/N,(N + α)/(N− 2)), Kα (x) is the Riesz potential, and f (x) ∈ H−1(RN) , f (x) 0 , f (x) ≡ 0. We prove that there exists a constant λ ∗ > 0 such that the equation above possesses at least two positive solutions for all λ ∈ (0,λ ∗) . Furthermore, we can obtain the existence of the ground state solution.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"119 1","pages":"553-563"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2017-09-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the existence of multiple positive solutions for the following equation: −Δu+u = (Kα (x)∗ |u|p)|u|p−2u +λ f (x), x ∈ R , where N 3, α ∈ (0,N), p ∈ (1+ α/N,(N + α)/(N− 2)), Kα (x) is the Riesz potential, and f (x) ∈ H−1(RN) , f (x) 0 , f (x) ≡ 0. We prove that there exists a constant λ ∗ > 0 such that the equation above possesses at least two positive solutions for all λ ∈ (0,λ ∗) . Furthermore, we can obtain the existence of the ground state solution.
非齐次非线性Choquard方程的多个正解
本文研究了下列方程的多个正解的存在性:−Δu+u = (Kα (x)∗|u|p)|u|p−2u +λ f (x), x∈R,其中N 3, α∈(0,N), p∈(1+ α/N,(N + α)/(N−2)),Kα (x)是Riesz势,f (x)∈H−1(RN), f (x) 0, f (x)≡0。我们证明了存在一个常数λ∗> 0,使得上述方程对所有λ∈(0,λ∗)至少有两个正解。进一步,我们可以得到基态解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信